
Are Mobile Banking Apps Secure? What Can Be Improved?
Sen Chen

East China Normal University, China

ecnuchensen@gmail.com

Ting Su
∗

East China Normal University, China

Nanyang Technological University,

Singapore

Lingling Fan

East China Normal University, China

Guozhu Meng

Chinese Academy of Sciences, China

Nanyang Technological University,

Singapore

Minhui Xue

Optus Macquarie University Cyber

Security Hub, Australia

Yang Liu

Nanyang Technological University,

Singapore

Lihua Xu
∗

East China Normal University, China

New York University Shanghai, China

ABSTRACT
Mobile banking apps, as one of the most contemporary FinTechs,

have been widely adopted by banking entities to provide instant

financial services. However, our recent work discovered thousands

of vulnerabilities in 693 banking apps, which indicates these apps

are not as secure as we expected. This motivates us to conduct this

study for understanding the current security status of them. First,

we take 6 months to track the reporting and patching procedure

of these vulnerabilities. Second, we audit 4 state-of-the-art vulner-

ability detection tools on those patched vulnerabilities. Third, we

discuss with 7 banking entities via in-person or online meetings

and conduct an online survey to gain more feedback from finan-

cial app developers. Through this study, we reveal that (1) people

may have inconsistent understandings of the vulnerabilities and

different criteria for rating severity; (2) state-of-the-art tools are not

effective in detecting vulnerabilities that the banking entities most

concern; and (3) more efforts should be endeavored in different as-

pects to secure banking apps. We believe our study can help bridge

the existing gaps, and further motivate different parties, including

banking entities, researchers and policy makers, to better tackle

security issues altogether.

CCS CONCEPTS
• Security and privacy→ Software and application security;

KEYWORDS
Mobile Banking Apps, Vulnerability, Empirical Study

∗
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00

https://doi.org/10.1145/3236024.3275523

ACM Reference Format:
Sen Chen, Ting Su, Lingling Fan, GuozhuMeng,Minhui Xue, Yang Liu, Lihua

Xu. 2018. Are Mobile Banking Apps Secure? What Can Be Improved?. In

Proceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),
November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3236024.3275523

1 INTRODUCTION
“There are two big opportunities in the future financial industry. One
is online banking, where all the financial institutions go online; the
other is internet finance, which is purely led by outsiders.” — Jack Ma.

A few years ago, Jack Ma argued the differences between Fin-

Tech (financial technology) and TechFin (technological finance).

FinTech [11] is known as a new industry where cutting edge tech-

nologies are applied in financial services. It is used to help compa-

nies manage the financial aspects of their businesses. TechFin [8],

on the other hand, is the third-party company that offers new tech-

nological solutions (e.g., security service). For example, as one of

the most popular contemporary FinTechs, mobile banking appli-
cations (apps), have been widely adopted by banking entities to

provide instant financial services (e.g., money transfer, peer-to-peer

payment). Undoubtedly, securing such FinTech as banking apps is

important and crucial to our interests.

However, as revealed by our recent large-scale study, these fi-
nancial services (e.g., banking apps) are not that secure in the real
world [20]. Specifically, we built an automated security analysis tool

Ausera [20], and assessed 693 banking apps across over 80 coun-

tries. Ausera unveiled 2,157 vulnerabilities, many of which could

cause serious sensitive data leakage (e.g., PIN code, user name).

To investigate such an alarming phenomenon, we take three

steps to investigate the current security status of banking apps.

First, we report 335 vulnerabilities to the 60 corresponding bank-

ing entities for confirmation, and track the patching process by

scanning the new app versions. However, the reporting process

is not as smooth as we expected. Due to lack of online contact

information or security supporting services, we only receive a few

valid responses. We keep tracking the email responses from August

1, 2017 to January 31, 2018 (6 months in total), but only receive

responses from 16.67% (10/60) banking entities.

https://doi.org/10.1145/3236024.3275523
https://doi.org/10.1145/3236024.3275523

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu

693 banking apps

Vul. Types

Assessment

AUSERA
Gap

investigation

Banking Entities

report

Confirmation
& Feedback

RQ1: Reporting, patching efficiently?
RQ2: Existing tools effective?

RQ3: Gaps between different parties?

• Vul.
• Damage
• Attacks

Lessons learned
Survey

Longitudinal
analysis

Figure 1: Workflow of our study
During the 6months, 30% (18/60) banking entities patched 41.27%

(52/126) of our reported vulnerabilities. On average, it takes 75 days

for a bank to patch one vulnerability, which is obviously far from

satisfactory. We find several reasons that account for such a long

patching time: (1) banking entities may not be aware of or em-

phasize specific vulnerabilities in practice; (2) they do not have

standard severity rating criteria to prioritize vulnerability patch-

ing; (3) they usually rely on penetration testing [16] to guarantee

security, which however may not be able to detect vulnerabilities

of their concerns.

Second, we explore whether the state-of-the-art security tools

can uncover vulnerabilities that the banking entities most concern.

To this end, we choose four representative tools often used by

developers in practice, i.e., Qihoo360 [18], AndroBugs [1], and

QARK [17] and MobSF [15], to assess those banking apps that have

been patched according to our reports. Based on the analysis results,

we find two obvious weaknesses of these tools: (1) they output a

large number of false positives due to the syntax-based checking

strategies; (2) they may fail to handle different malicious scenarios

due to the same vulnerability (e.g., using invalid server verification).

Third, we set up several in-person or online meetings with the

banking entities from UK, India, China, Singapore, and HongKong,

e.g., HSBC, OCBC, DBS, and BHIM, to understand the policies they

follow. We surprisingly find banking entities may have inconsistent

understandings with academic researchers or even with themselves.

They emphasize more on data leakage-related and invalid authenti-

cation vulnerabilities than the other types. Furthermore, we con-

duct an online survey for app developers to familiarize with their

security considerations and vulnerability understandings during

development. We find developers may choose insecure APIs or im-

plementation methods due to their preference or expertise. Based

on the experience, we distill several lessons and recommendations

for different parties, including banking entities, researchers and

policy makers, to better secure banking apps.

In summary, we make the following contributions:

• We conduct the first study to track and investigate the vulnerabil-

ity patching process of mobile banking apps, and communicate

with banking entities on the discovered vulnerabilities by our

security risk assessment tool Ausera.

• We unveil several problems in industrial practice, and also eval-

uate the abilities of the state-of-the-art vulnerability detection

tools on the patched vulnerabilities that the banking entities most

concern.

• We distill several lessons and recommendations from our investi-

gation, and show the gaps that banking entities, researchers and

policy makers that need to close.

We believe our study can provide useful insights for different

parties to secure mobile banking apps. We here also emphasize

that our study has received positive feedback from the banking

entities in question and already driven several improvements in

their policies, as well as our tool, Ausera, has done its upmost for

boosting their products’ quality.

2 STUDY DESIGN
In this section, we first briefly introduce the workflow of our study

and summarize three research questions we aim to answer in this

paper. Next, we introduce the procedure of vulnerability collection.

Last, we give a real vulnerability case to show its damage and briefly

illustrate how Ausera can detect it.

2.1 Workflow of Our Study
As shown in Figure 1, our study contains 4 phases:

(i) Vulnerability collection. We apply our automated security

risk assessment tool, Ausera, on 693 mobile banking apps to col-

lect vulnerabilities. Specifically, Ausera employs two strategies to

detect vulnerabilities in mobile banking apps: a forward data flow
analysis to determine whether there exists sensitive data flowing

into insecure sinks (e.g., sendTextMessage); a backward control
flow analysis to check whether the vulnerable API invocation pat-

terns in communication infrastructure are truly reachable (e.g.,

invalid server authentication). After assessing all banking apps, we

manually confirm vulnerabilities by inspecting the corresponding

vulnerable code. We adopt several reverse-engineering and analysis

tools (e.g., Apktool [5], jadx-gui [9]) to ease our analysis. The

manual analysis takes us about one and half a month, including the

demonstration of how to exploit several severe vulnerabilities to

get users’ sensitive data.

(ii) Progress tracking. We track the procedure of vulnerability

reporting and patching via emails and in-person meetings. Specifi-

cally, we send the detected vulnerabilities, potential damages and

attacks to the banking entities, and set up in-person meetings if

necessary. Further, we conduct an online survey to collect feedback

from app developers about their security consideration during de-

velopment and understanding of vulnerabilities. To achieve this, we

crawled the email addresses of over 2.5k Android app developers

and invite them to participate the survey. All of them have the

experience of developing apps in the “FIANANCE” category on

Google Play. We have received 20 responses in total until now.

(iii) Gap investigation. We compile the feedbacks from banking

entities and industrial developers, observe the problems during the

vulnerability reporting and patching procedure, and investigate the

security gaps between different parties.

Are Mobile Banking Apps Secure? What Can Be Improved? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

// Get data from EditTexts

public String getRegisterSms() {

StringBuilder m = new StringBuilder(“REG”);

m.append(getPin() + “/”);

m.append(getFirstName() + “/”);

m.append(getLastName() + “/”);

m.append(getAddress());

return m.toString();

}

// Send the data via SMS

public void execute() {

sendSmsMessage(getRegisterSms());

}

// SMS sending code

private void sendSmsMessage(String message) {

this.smsManager.setMessage(message);

this.smsManager.setDestinationAddress(“…”);

SmsHandler.builder().activity(this.activity);

smsManager(this.smsManager).build().send();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

User Input
Data

Figure 2: Pseudo code of banking app that leaks credentials

(iv) Longitudinal analysis. We summarize the lessons learned

from our study. We also provide some recommendations to banking

entities, academic researchers and policy makers on how to shorten

the vulnerability patching time and bridge existing gaps.

2.2 Research Questions
In this paper, we aim to answer the following research questions

by tracking the procedure of vulnerability reporting and patching.

• RQ1: If some vulnerabilities were found in the mobile banking

apps, canwe efficiently reach the corresponding banking entities?

Can the vulnerabilities be efficiently patched?

• RQ2: Are the state-of-the-art security analysis tool effective for

detecting the vulnerabilities that the banking entities concern?

• RQ3: What are the differences of understanding vulnerabilities

and rating the severity between different parties, e.g., banking

entities, third-party security companies and researchers?

2.3 Vulnerability Collection
We collected 693 mobile banking apps from Google Play, which

cover more than 80 developed and developing countries across

5 continents. We then apply Ausera to identify vulnerabilities.

Ausera has integrated 16 vulnerability types [20] in total. These

types are collected from prior research [23], best industrial practice

guidelines (e.g., Google Android Best Practice [13] and OWASP),

online secure reports, and security weakness and vulnerability

databases (e.g., CWE, CVE). Finally, we collected 2,157 vulnerabil-

ities in total, 592 of which are related with private data leakage

(affecting 470 banking apps), such as Preference Leakage, Logging
Leakage, SMS Leakage, and SD Card Leakage. Additionally, invalid
authentication is also more likely to be exploited (affecting 222

apps), but always gains little attention from app developers.

2.4 A Real Vulnerable Case
To better understand what a data-related vulnerability is and how

Ausera detects it, we give a real vulnerable case. The case is taken

from the app of a famous banking entity in Southeast Asia with

10M-50M downloads on Google Play. It discloses users’ credentials

and may cause severe financial loss. Specifically, after users reg-

ister by entering their names, passwords and addresses, the app

Table 1: Tracking information of 7 banking entities we have
successfully got in touch with till now

Banking
Apps #Email

Duration
(days)

In-person
meeting Country Download

HSBC 20 30 02/17/2018 UK & China 5M-10M

OCBC 7 45 01/12/2018 Singapore 5M-10M

DBS 14 35 01/15/2018 Singapore 5M-10M

MyAadhar 15 42 11/03/2017 India 50M-100M

BHIM 18 42 11/03/2017 India 10M-50M

ICICI Netbanking 20 47 11/19/2017 India 100M-500M

ICICI Pockets 20 47 11/19/2017 India 50M-100M

packages users’ credentials into an SMS message and sends them to

the bank server via ServiceManager on Android. It is extremely

astonishing that the SMSmessage with credential data is also stored

into the outbox. Assume the user device runs a daemon service of

a malicious app at the backend, which could extract the credentials

inside the outbox and thereby send out to its remote server con-

trolled by a cybercriminal. Consequently, the cybercriminal is able

to use the stolen credentials to access the victim’s account.

Figure 2 presents the pseudo code of this vulnerability. The confi-

dential data is extracted from the EditTexts (Lines 4-7); themethod

execute() is called to send a message (Line 12) containing the ex-

tracted confidential data, and SmsManager sends the credentials

(Line 19). To detect this leakage, Ausera first tags sensitive data

by applying NLP techniques, and then uses control- and data-flow

analysis to track the data flow (the red arrows in Figure 2 indicate

the flow of the user input data) until it sends out the data. Ausera

extracts the leakage path of user inputs and validates the app does

send sensitive user data via SMS.

3 SECURITY STATUS QUO
3.1 Vulnerability Reporting
When reporting vulnerabilities, we find many banking entities do

not provide contact information or security supporting service on

their official websites. As a result, we have to contact them by

using the emails of app developers found on Google Play. This

phenomenon indicates that banking entities have not pay enough

attention to the security of their apps. They do not provide an

efficient channel or a bounty program to receive security feedback

from third-parties (e.g., users, researchers).

We contacted 60 banking entities by sending the corresponding

vulnerabilities. However, we only received responses, including

114 emails in total, from 10 banking entities. Some banking entities

gave us positive responses, which confirmed the reported vulnera-

bilities. They would like to cooperate with us to patch the reported

vulnerabilities in their new versions. However, as shown in Table 1,

7 out of 10 banking entities gave us real replies, while the other 3

only gave auto-replies, saying that:

• “We proceeded to forward your request to the competent office; in
case the proposal will be positively evaluated, you will be contacted
at the addresses that you kindly provided us.”
• “Your ticket number is 553331, Our Support team are currently
reviewing your concern. Please expect a response from us.”

We explained the reported vulnerabilities in detail to the 7 bank-

ing entities via email, and sent 16 emails on average to each of them.

But this communication method is proved to be time-consuming

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu

Table 2: Tracking the status of vulnerability patching

Types #Apps
#Patched
Apps #Vuls

#Patched
Vuls

Patching
Rate

#New
Vuls

Actively responded 10 7 56 24 43% 0

Silently patched 11 11 70 28 40% 5

Total 21 18 126 52 41.27% 5

and ineffective. Therefore, we decided to set up in-person or online

meetings with these banking entities. We successfully set up the

meetings with 7 banking entities. In each meeting, the number of

participants is more than 10, and the duration is more than 2 hours.

At least three people from our research team participated in the

meeting. We extensively discussed the reported vulnerabilities in

these banking apps, and exchanged our idea on how to ensure app

security and other related topics. In particular, we visited some

banking entities from Singapore and China in person. More results

are discussed in Section 4.

3.2 Vulnerability Patching
As shown in Table 2, we find that 21 out of 60 banking entities

have confirmed the reported vulnerabilities in two different ways.

10 banking entities confirm the vulnerabilities by emailing us the

positive feedback. Specifically, 7 of 10 have fixed the vulnerabilities,

and the rest 3 claim they will patch the vulnerabilities soon in the

next release versions but need our assistance. However, another

11 banking entities confirm the vulnerabilities by silent patching

— we haven’t received any responses from them, but they indeed

patch the corresponding vulnerabilities in their new versions. To

further confirm the patching status, we recheck the latest release

versions of these 60 banking apps, and find 18 banking entities have

already patched 52 vulnerabilities in their apps according to our

vulnerability reports.

There are 126 vulnerabilities detected in the 21 banking apps.

However, the patching rate of the reported vulnerabilities is low

either for banking entities with “Actively responded” (43%) or with

“Silently patched” (40%). We explore the reasons behind in Sec-

tion 4. On the other hand, during the patching procedure, 5 new

vulnerabilities are introduced in new versions. It indicates banking

entities do not have effective security assessment mechanism for

their apps. For example, the banking app (C∗) has 6 vulnerabilities.
In its updated version, two reported vulnerabilities (i.e., Only Uses

HTTP Protocol and Logging Leakage) are patched by employing

SSL/TLS over HTTPS communication. However, new vulnerabilities

are introduced, i.e., the app does not verify the identity of bank

server when using SSL/TLS.

3.3 Auditing Vulnerability Detection Tools
According to the discussion with banking entities, we find the top

priority of banking entities is to patch vulnerabilities related to data

leakage and invalid authentication. Among the 52 patched cases

from 18 banking apps, 29 cases are relevant to data leakage, and

6 cases are using invalid authentication. Banking entities patched

67.31% of these two types of vulnerabilities. Based on the observa-

tion, we intend to investigate whether the state-of-the-art security

tools can effectively detect such vulnerabilities.

We apply 4 state-of-the-art industrial and academic tools, Qi-

hoo360, AndroBugs, QARK and MobSF on the 18 patched bank-

ing apps to investigate their abilities of detecting data leakage-

related and invalid authentication vulnerabilities. Qihoo360 and

AndroBugs are the representative tools in industry and academy,

respectively. QARK and MobSF are both open-source tools and

often used in practice according to our survey. In Table 3, we show

7 different types of data leakage-related vulnerabilities (e.g., Prefer-

ence Leakage, SMS Leakge, and Screenshot) and invalid authentica-

tion. We tick the types of vulnerabilities these tools can detect. We

can see all tools can handle invalid authentication via syntax- or

pattern-based checking methods, but we find they can be negatively

affected by the existence of dead code (incurring false positives).

On the other hand, these tools cannot detect most of data leakage-

related vulnerabilities. Only MobSF and AndroBugs can detect

sensitive data disclosure through logging, encryption key hard-code

and screenshot. MobSF achieves this by simply matching such APIs

as Log.e(), Log.d() and Log.v(). However, it may incur a number

of false positives, since it is very common for developers to output

some insensitive information of their apps via Log.d() to ease

debugging. We find MobSF reports 167 logging-related cases for the

banking app GCash, 165 of which are all false positives. Meanwhile,

it reveals 17 false positives related to encryption key hard-coded,

but they only indicate which Java files are relevant to encryption

functions, such as Cipher objects. Actually, they use “Files MAY
contain hard-coded keys.” as a declaration for their detected security

cases, which is not actionable for patching. Moreover, we find these

tools cannot detect all the vulnerabilities that they declare to be

able to detect. For example, QARK and Qihoo360 cannot detect all

the 6 vulnerabilities of invalid authentication.

QARK is often used by developers or third-party security compa-

nies to guarantee app security according to our online questionnaire.

However, as shown in Table 3, it cannot detect data leakage-related

vulnerabilities that banking entities most concern. In addition, de-

velopers also use the tools like Xposed [19] and Frida [12] to assist

their security assessment for apps. Xposed, a hook framework, can

change the original behaviors of the system and apps. Frida, a dy-

namic instrumentation toolkit, can inject scripts to explore native

apps on Android. Strikingly, several developers rely on functional

testing tool like JUnit to guarantee app security.

4 LESSONS LEARNED
This section summarizes the lessons learned from our study, includ-

ing 114 email exchanges, 7 in-person meetings, and 20 valid online

questionnaires. It helps us understand the gaps between different

parties, including banking entities, researchers, and third-party

security companies.

4.1 Different Understanding of Vulnerabilities
Understanding of reported vulnerabilities between banking
entities and researchers. From the view of academic researchers,

we usually recommend all of the reported vulnerabilities should be

patched as soon as possible. However, from the view of industrial

practice, banking entities think that only parts of them are vulnera-

ble and should be patched. We provide three cases to demonstrate

this divergence as follows.

• Hash functions MD5 and SHA1 have been proved insecure many

years ago [24]. However, they are still widely used in app develop-

ment. The online questionnaire unveils that 60% developers are

still using MD5 or SHA1 for cryptographic use (e.g., randomization

and integrity validation), although they have been aware of the

Are Mobile Banking Apps Secure? What Can Be Improved? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 3: Patched vulnerability types that banking entities concern

Concerned
Preference
Leakage

Logging
Leakage

SD Card
Leakage

WebView
Leakage

SMS
Leakage

Encryption Key
Hard-coded Screenshot Invalid

Authentication

#Patched Vuls 4 7 4 3 2 2 7 6

Qihoo360 [18] - - - - - - ✓

AndroBugs [1] - - - - - - ✓ ✓

QARK [17] - - - - - - - ✓

MobSF [15] - ✓ - - - ✓ - ✓

weakness. In addition, some banking entities don’t care whether

the imported third-party libraries use the message digest even if

they are aware of it. “In case the instances (i.e., vulnerabilities)

are in the third party libraries we do not consider such instances

as these do not fall within the scope of the assessments.” as the

team from BHIM and MyAadhar said in the email.

• Logging sensitive data is very common in industry. Some sen-

sitive data is leaked as debugging outputs, such as payee name,

transfer money, and transfer time. According to the results from

online questionnaires, we find there are still 50% of developers

logging sensitive data in their delivered apps. Some banking enti-

ties (e.g., ICICI Netbanking and Pockets) assume “if the minimum

SDK is 16, no application can read the logs of other applications

even installed on the same device, which is a secure environ-

ment.” But this is not always true, especially when the devices

have been rooted or under privilege escalation attacks. The ap-

propriate mitigation is to remove these debugging outputs before

release, which has been widely acknowledged in academia [23].

• The last one is invalid authentication for banking apps. Some

banking entities (e.g., HSBC China) used two types of authenti-

cation before login and after login, respectively. The problem-

atic authentication phase is before login: before logging in the

banking app, they use an invalid authentication to set up the

communication between the app and remote server. That is, they

do nothing in the function of checkServerTrusted on invalid

certificates, it is at risk for users’ data and behaviors.

Understanding of samevulnerabilities betweendifferent bank-
ing entities. Actually, as for a certain vulnerability, different bank-

ing entities may hold different understandings. Here, we give a

real case to explain the phenomenon. We regard screenshot as

a vulnerable behavior for banking apps, because malicious apps

can extract users’ credentials and other sensitive data (e.g., trans-

fer data) via screenshots. The developers in OCBC from Singa-

pore thought “screenshot is a basic function for banking users,

since users may want to share information to their friends”. How-

ever, the developers in BHIM from India confirmed the damage

of screenshots although they don’t know how to patch it at first.

The results from online questionnaire show that 75% developers

think allowing screenshot in a security-related app is vulnerable,

however, the rest of developers hold the opposite opinion. We

don’t think that screenshots of all app pages have damage, but it

is at least vulnerable to sensitive pages (e.g., pages of login, regis-

tration and transfer). To avoid this screenshot attack, developers

should set WindowManger.LayoutParams.FLAG_SECURE by calling
getWindow()#setFlags in the page that should be protected.

4.2 Severity Criteria and Concerns
Severity criteria of reported vulnerabilities. Due to high vul-

nerability patching cost (time and human efforts), banking entities

prefer to patch the vulnerabilities of high risks. Specifically, OCBC
and DBS rely on CVSS [7] to determine the severity of found vul-

nerabilities, while the other 5 banking entities check whether the

vulnerabilities belong to sensitive data leakage. If so, such vulnera-

bilities are considered of high risks. But the standard of sensitive

data leakage is too coarse-grained since the definition of data is

unclear, and the criterion CVSS is not that complete and perfect.

Actually, there is also no standard criteria for vulnerabilities in

academia. But researchers prefer security metrics, such as the sever-

ity of damage, the cost of exploits, and CVEs, to decide the severity

of vulnerabilities.

Concerns of banking entities about vulnerabilities. Banking
entities do concern about reported security issues: “HSBC takes
the security of its customers, systems and data very seriously and
we are always interested in any security issues raised by users and
researchers of our web sites and welcome any relevant information
that you may have.”, said by HSBC security team from the UK in

the email. According to the patching results, received emails, and

in-person meeting, we find all banking entities concern more about

sensitive data leakage and invalid authentication vulnerabilities,

such as SMS and Preference leakage.

4.3 Collaboration and Responsibility
Collaborationmechanism between researchers, banking en-
tities and third-party security companies. When we first re-

ported the vulnerabilities to banking entities, their developers can-

not patch them directly due to lack of enough security knowledge.

Banking entities handed them over to third-party companies for

seeking further confirmations and supports. It was stated that the

third-party companies used penetration testing (e.g., QARK [17],

Frida [12] and Drozer [10]) to check the banking apps before

delivery. However, penetration testing cannot fully guarantee the

security of apps since it relies on manual analysis. The whole pro-

cess of security check is transparent to banking entities, and that

is why they have to resort to third-party companies for confirma-

tion of newly discovered vulnerabilities. Actually, the vulnerability

patching time includes the communication time and actual fixing

time, which explains the long patching duration. Therefore, the col-

laboration between researchers, banking entities and third-parity

companies is not very efficient.

Who should be responsible? In some cases, banking entities re-

fused to take the responsibility of introducing vulnerabilities. One

real case is as follows. One banking app stores user name and pass-

word to an XML file via SharedPreference, an internal storage. If a

malicious app is installed on the same device, users’ sensitive data

can be stolen easily. However, some banking entities think users

should be responsible for such risk, since they should not download

and install malicious apps on their devices for whatever reasons.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu

In other cases, the banking entities think the third-party security

companies should be responsible. For example, the developers use

setSeed when implementing SecureRandom, which is vulnerable

due to lack of randomness. They require third-party companies or

their own security team to add the corresponding detectionmethods

when inspecting newer versions. Additionally, in some cases, they

only recognize the severity after we report the vulnerabilities (e.g.,

invalid authentication before login). Under this situation, it is the

banking entity itself that should be responsible for the vulnerability.

4.4 Recommendations
What can be improved for banking entities?
• Banking entities should provide various channels to respond to

vulnerabilities, especially for the researchers who are focusing

on the relevant research topics. For example, they can provide

the contact information of security supporting service on the

prominent position of their company websites.

• App packing [25] is one of the effective protection methods for

banking apps, such as ApkProtect [4], Bangcle [6], and Iji-

ami [14]. It can significantly complement penetration testing.

Even if one app has vulnerabilities, app packing can increase the

difficulty of exploitation.

• Banking entities should pay more attention to security issues

rather than only functional bugs [21, 22]. It is better to build a

security team by themselves or work with third-party security

companies, e.g., Alibaba Juanquan [3] and Ijiami [14].

• Banking entities should carefully choose third-party libraries, and

evaluate the risk imposed by the incorporation of these libraries.

What can be improved for academic researchers?
• Researchers should pay more attention on the research topics of

Android applications which have practical scenarios in industry.

• When reporting vulnerabilities, researchers are advised to pro-

vide more information such as the potential damage, exploitation

methods, and patching methods. It makes banking entities in-

stantly grasp these vulnerabilities so as to take duly measures.

• According to our online questionnaires, we summarize the vul-

nerability types that should receive more attention. The results

show that 78% of developers concern more about sensitive data-

related issues (e.g., privacy of users, info leaks, database), which

need further study and exploration.

What can be improved for policy makers?
• Explicitly designating the responsibility of each party can effec-

tively improve vulnerability patching and security awareness.

GDPR [2] (General Data Protection Regulation EU) already made

the first step.

• The policy makers should help standardize the third-party re-

porting channels.

5 CONCLUDING REMARKS
5.1 Impact of Our Study
The security status quo of the 7 banking entities that closely com-

municated with us has been changing in different aspects. (1) They

have accepted our reported vulnerabilities and actively collaborated

with us to improve the app security. In addition, the core developers

explored and learned the techniques used in Ausera from us. (2)

They asked us for help to conduct an automated security assess-

ment for their new versions with Ausera before release. (3) They

further explored penetration testing from third-party companies

to shorten the patching duration, such as the OCBC team. (4) They

took charge of the outdated versions in the wild by forcing updates

to reduce the impact of our reported vulnerabilities. (5) Some secure

hints are pushed to mobile users frequently by banking entities,

such as the banking app from DBS.

5.2 Conclusion
This paper represents the first study to track the reporting and

patching process of vulnerabilities in mobile banking apps, which

lasts more than 6 months. We received numerous positive feed-

back from banking entities on the reported vulnerabilities. We also

audited the state-of-the-art vulnerability detection tools for those

confirmed vulnerabilities. Finally, we provided many practical rec-

ommendations for different parties. In all, our study provides useful

insights to bridge the security gaps, and also helps banking entities

and third-party companies to better tackle security issues.

ACKNOWLEDGMENTS
We appreciate the reviewers’ constructive feedback. This work is

partially supported by NSFC Grant 61502170, the Science and Tech-

nology Commission of Shanghai Municipality Grant 18511103802,

NTU Research Grant NGF-2017-03-033 and NRFGrant CRDCG2017-

S04. Sen Chen is partly supported by ECNU Project of Funding

Overseas Short-term Studies.

REFERENCES
[1] 2015. AndroBugs. https://github.com/AndroBugs/

[2] 2016. General Data Protection Regulation. https://www.eugdpr.org/

[3] 2018. Alibaba Juanquan. https://angel.co/projects/112838-alibaba-juanquan

[4] 2018. APKProtect. https://github.com/CvvT/ApkProtect

[5] 2018. Apktool. https://ibotpeaches.github.io/Apktool/

[6] 2018. Bangcle Security (bangbang). https://www.crunchbase.com/organization/

bangbang-security

[7] 2018. Common Vulnerability Scoring System. https://www.first.org/cvss/

[8] 2018. Daily Fintech: From Fintech to TechFin. https://dailyfintech.com/2018/03/

16/from-fintech-to-techfin-three-trends-that-banks-will-be-worried-about/

[9] 2018. Dex to Java decompiler. https://github.com/skylot/jadx

[10] 2018. Drozer. https://github.com/mwrlabs/drozer

[11] 2018. Financial Technology. https://en.wikipedia.org/wiki/Financial_technology

[12] 2018. Frida. https://github.com/frida

[13] 2018. Google Best Practices for Security. https://developer.android.com/training/

best-security.html

[14] 2018. Ijiami. http://www.ijiami.cn/enindex

[15] 2018. MobSF. https://github.com/MobSF/Mobile-Security-Framework-MobSF

[16] 2018. Penetration Test. https://en.wikipedia.org/wiki/Penetration_test

[17] 2018. QARK. https://github.com/linkedin/qark

[18] 2018. Qihoo360 (Appscan). http://appscan.360.cn/

[19] 2018. Xposed. http://repo.xposed.info/module/de.robv.android.xposed.installer

[20] Sen Chen, Guozhu Meng, Ting Su, Lingling Fan, Yinxing Xue, Yang Liu, Lihua

Xu, Minhui Xue, Bo Li, and Shuang Hao. 2018. AUSERA: Large-Scale Auto-

mated Security Risk Assessment of Global Mobile Banking Apps. arXiv preprint
arXiv:1805.05236 (2018).

[21] Lingling Fan, Ting Su, Sen Chen, GuozhuMeng, Yang Liu, Lihua Xu, and Geguang

Pu. 2018. Efficiently manifesting asynchronous programming errors in Android

apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018. 486–497.

[22] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,

and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions

in Android apps. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. 408–419.

[23] Bradley Reaves, Nolen Scaife, Adam M Bates, Patrick Traynor, and Kevin RB

Butler. 2015. Mo (bile) Money,Mo (bile) Problems: Analysis of Branchless Banking

Applications in the Developing World. In USENIX Security. 17–32.
[24] XiaoyunWang andHongbo Yu. 2005. How to breakMD5 and other hash functions.

In Eurocrypt, Vol. 3494. Springer, 19–35.
[25] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive

unpacking of Android apps. In Software Engineering (ICSE), 2017 IEEE/ACM 39th
International Conference on. IEEE, 358–369.

https://github.com/AndroBugs/
https://www.eugdpr.org/
https://angel.co/projects/112838-alibaba-juanquan
https://github.com/CvvT/ApkProtect
https://ibotpeaches.github.io/Apktool/
https://www.crunchbase.com/organization/ bangbang- security
https://www.crunchbase.com/organization/ bangbang- security
https://www.first.org/cvss/
https://dailyfintech.com/2018/03/16/from-fintech-to-techfin-three-trends-that-banks-will-be-worried-about/
https://dailyfintech.com/2018/03/16/from-fintech-to-techfin-three-trends-that-banks-will-be-worried-about/
https://github.com/skylot/jadx
https://github.com/mwrlabs/drozer
https://en.wikipedia.org/wiki/Financial_technology
https://github.com/frida
https://developer.android.com/training/best-security.html
https://developer.android.com/training/best-security.html
http://www.ijiami.cn/enindex
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://en.wikipedia.org/wiki/Penetration_test
https://github.com/linkedin/qark
http://appscan.360.cn/
http://repo.xposed.info/module/de.robv.android.xposed.installer

	Abstract
	1 Introduction
	2 Study Design
	2.1 Workflow of Our Study
	2.2 Research Questions
	2.3 Vulnerability Collection
	2.4 A Real Vulnerable Case

	3 Security Status Quo
	3.1 Vulnerability Reporting
	3.2 Vulnerability Patching
	3.3 Auditing Vulnerability Detection Tools

	4 Lessons Learned
	4.1 Different Understanding of Vulnerabilities
	4.2 Severity Criteria and Concerns
	4.3 Collaboration and Responsibility
	4.4 Recommendations

	5 Concluding Remarks
	5.1 Impact of Our Study
	5.2 Conclusion

	Acknowledgments
	References

