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Problem
Malware poses a severe threat in our daily life
due to the massive downloads of applications in
recent years. Much progress has been made on
the detection accuracy, but neglects the compu-
tational cost.

↓

We propose a malware detection system through
Pareto ensemble pruning to trade off the classi-
fication accuracy and the computational cost.

Pareto Ensemble Pruning
The problem is formulated as a bi-objective op-
timization problem,

1. Obj: Classification accuracy;

2. Obj: Computational cost.

Let Tt denote a pruned classifier set with the se-
lected vector t ∈ {0, 1}m, where ti = 1 indicates
the base learner bi is selected for the ith compo-
nent. The optimal pruned ensemble Topt.sel can
be formulated as follows:

Topt.sel = argmin
t∈{0,1}m

E (Tt) + w · |Tt| ,

where E (Tt) is the validation error rate of Tt,
w ∈ [0,+∞] is the trade-off level, and

E (Tt) + w · |Tt|

is the combined loss function.
Given a validation dataset with k instances, for
validation instance i, Tt (xi) is the prediction
value of Tt, and yi is the actual value. E (Tt)
is calculated as

E (Tt) =
1

k

k∑
i=1

χ (Tt (xi) 6= yi) ,

where χ (·) is the indicator function, which e-
quals 1 if the expression holds; otherwise, it e-
quals 0. The size of the ensemble is computed
as:

|Tt| =
m∑
i=1

ti

The optimal pruned ensemble T (i)
opt.sel can be de-

fined based on different trade-off levels wi, for all
i:

T
(i)
opt.sel = argmin

t∈{0,1}m
E (Tt) + wi · |Tt| .

Features
We select 155 features in total to perform a bi-
nary classification. Four types of features are
shown below:

Type of Features Selected Features
Permission 59
Sensitive API Call 90
Sequence 1
Dynamic Behavior 5
Total 155

Begonia
Four steps: Reverse Engineering −→ Feature Extraction −→Ensemble Pruning −→ Classification
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Optimal Ensemble Selection
To trade off the two objectives, provided by a trade-off level w, we select the final ensemble that
minimizes the combined loss (i.e., E (Tt) + w · |Tt|), e.g., given different trade-off levels,

w1 = 0.0006
final ensemble−−−−−−−−−→ p2;

w2 = 0.00025
final ensemble−−−−−−−−−→ p4.
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Results
Goal: To examine the relation between accuracy and time cost of real-time analysis.
Iteration times:

⌈
n2 log n

⌉
, when dealing with the bi-objective solver.

# Group Size Time (sec) Accuracy
10 60 93.40%
20 460 94.20%
30 1,546 94.70%
40 3,654 95.00%
50 7,450 95.20%

*Note that accuracy column indicates the highest accuracy of each group.
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