
EP-Detector: Automatic Detection of Error-prone
Operation Anomalies in Android Applications

Chenkai Guo∗†∥, Qianlu Wang∗, Naipeng Dong‡, Lingling Fan∗, Tianhong Wang§,
Weijie Zhang§, Enbao Chen∗, Zheli Liu∗, and Lu Yu¶∥
∗DISSec, College of Cyber Science, Nankai University, China

†Haihe Lab of ITAI, China
‡The University of Queensland, Australia

§College of Computer Science, Nankai University, China
¶National University of Defense Technology, China

∥Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, China
{guochenkai,wql,linglingfan,tianhongwang,2210977,liuzheli}@nankai.edu.cn, n.dong@uq.edu.au,

a505025234@gmail.com, yulu@nudt.edu.cn

Abstract—Android applications are pervasively adopted and
heavily relied on in our daily life, leading to the growing demand
for enhanced user experiences, such as ease for operation and
robustness. Nevertheless, developers continue to prioritize tradi-
tional functionality and performance, overlooking the pivotal role
of user experience in real-world scenarios. For example, poorly
designed page elements can lead to user confusion, resulting
in unexpected outcomes, termed as the error-prone operation
anomalies (EPAs). In this work, we undertake the first effort to
uncover the underlying essence of the EPA problem. To achieve
this objective, we investigated the root causes of EPAs from three
dimensions, i.e., subject, object and environment. These causes
were identified by multi-stage attribute capturing and precise
similarity computation. In this process, the causes are categorized
into fine-grained classes, namely confusing behaviours, unsuitable
layout, and resource overload. Building upon these insights,
we propose a dynamic GUI-based testing tool EP-Detector to
facilitate detecting the EPAs in real-world apps. The EP-Detector
is equipped with widget-exploration based target navigation and
automatic test oracle, enabling it to detect error-prone page
elements and simulate events with both comprehensiveness and
precision. To systematically study the prevalence and severity
of real-world EPAs, we conducted experiments on 53 popular
Android apps with EP-Detector. The confirmed results not only
validate the high precision and completeness of EP-Detector
but also highlight that EPAs are prevalent in current apps,
with at least one EPA existing in every two page widgets
on average, and 28.3% of them may lead to security and
functionality issues or risks. The EP-Detector is available at
https://github.com/WordDealer/EP-Detector.

Index Terms—Android application, User operation, Anomaly
detection, Error-prone operation, Automated test

I. INTRODUCTION

Android applications (apps for short) are software running
on mobile systems, which are normally equipped with numer-
ous Graphical Use Interfaces (GUIs) for miscellaneous user
interactions. User behaviours are the typical input to Android
apps, driving the execution of the apps’ underlying functional-
ity. The diversity of user behaviours and their temporal nature

Corresponding author: Lingling Fan.

raise the complexity of an app’s execution routines, thereby
posing a challenge in GUI-based app testing. Since the pio-
neering work by Hu et al. [1] in 2011, the testing of GUI-based
mobile apps has gradually emerged as a focal area of interest
in both industry [2]–[4] and academia [5]–[7]. Traditional
GUI-based testing generates test cases to approximate criti-
cal user interactive behaviours or guide the execution paths,
which facilitates uncovering fatal crashes [8]–[10], framework
weaknesses [11], [12], non-crashing functional bugs [13]–[15]
or security vulnerabilities [16], [17]. In existing GUI-based
testing works, a latent but strong assumption is that all test
cases are correctly and accurately executed by users.

However, achieving this assumption can be challenging
in the practical use of Android apps. On one hand, as
user requirements for rich functionalities increase, the user
events specified by Android tend to be more miscellaneous
and complex. For instance, Android introduced an optional
gesture system, including “swipe up”, “swipe in a hook
move” etc. in version 10.0 [18], which allows replacing all
bottom buttons with a single bar. However, users often find
these swiping operations confusing, leading to imprecise and
incorrect operations. On the other hand, Android apps typically
operate under stringent device limitations and within complex
scenarios compared to traditional PC devices, which further
amplifies the challenge of performing correct operations. For
instance, the screen size of mobile devices are normally
limited. Users are required to accomplish diverse operations
with a bigger “cursor” (fingers) on a relatively smaller range.
In addition, the operations of mobile apps can hardly be stable,
due to the heterogeneous use scenarios, e.g., users usually
operate the mobile device when standing, walking or even
lying down. Moreover, the system resources of Android, e.g.,
CPU, RAM and network, are constrained, and such resource
limitation tends to raise system freezes and crashes, which
further increases the risk of misoperations.

The misoperations are often triggered by unreasonable
design of page elements. A sound page design should be

(a) Too small “cancel” (b) Confusing “three-fingered screenshot”

ⅹ

(c) “Erroneous payment” caused by page loading

①

①

②

③

④

① ②

③

Fig. 1. Motivating Examples.

robust to the aforementioned sensitivities. That is, the user
will not experience misoperations resulting from 1) inadequate
interactions with widgets, 2) layout issues of widgets, or 3)
resource environment constraints. In this work, we refer to
the user’s misoperation caused by error-prone page elements
as the Error-prone Operation Anomaly (EPA). The ubiquity
of EPAs (which will be verified in our later experiments)
produce negative impacts on apps such as degraded user
experience, execution crashes and security risks for users
without professional exercise. However, to the best of our
knowledge, there is still lack of systematical study and precise
detection for the EPAs. The challenges of EPA detection
are two-fold. First, the consequences of EPA have diverse
manifestations, making it difficult to capture the underlying
root-causes. Second, given the probabilistic occurrence of
EPAs, it is challenging to trigger and identify various types
of such unconventional misoperations in a consistent manner.
In this paper, we address the challenges by proposing a novel
dynamic testing technique EP-Detector.

To identify the root-causes of EPAs, EP-Detector analyzes
each target widget that users interact with, based on three
factors: subject, object and environment.

• The subject refers to user behaviours interacting with the
target widget. If similar user operations yield different
outcomes, termed confusing behaviours, and if the widget
supports them, users are likely to be misled.

• The object refers to design of widgets capable of trig-
gering error-prone operations. One prominent issue is the
unsuitable layout in the widget, for example the elements’
size and spacing, which often results in misoperations.

• The environment refers to the resources that facilitate the
execution of the target widget such as the CPU, RAM and
network. Drastic environmental changes, such as resource
overload, can lead to misoperations, particularly if the
widgets are sensitive to the changes.

EP-Detector then develops GUI-based testing from the
above insights. To address the challenge for triggering and
identifying EPAs, EP-Detector employs the following tech-
niques: ❶ Multiple execution strategies and test oracle meth-
ods are designed to capture the heterogeneous dynamic nature
of the testing. ❷ A two-stage target navigation with fine-

grained trace guidance and multi-level target identification is
designed and implemented to ensure a smooth and accurate de-
tection. ❸ Optimization strategies such as page-level abstrac-
tion and operation grouping are devised to enhance detection
efficiency. The performance of EP-Detector is evaluated on 53
well-known real-world apps covering diverse app categories
containing 9073 widgets across 525 pages. The EP-Detector
detects 5136 confirmed EPAs, with an average precision of
88.28%. The results illustrate that EPAs are prevalent in
current apps, with at least one EPA existing in every two page
widgets on average, and 28.3% of them may lead to security
or functionality risks.

In summary, the contributions of this paper are as follows:
• We are the first to conduct a systematic study of the

error-prone operation anomalies (EPAs) in Android apps,
including their prevalence, root-causes and impacts.

• We propose a novel testing technique EP-Detector for the
dynamic detection of EPAs, covering behaviour-, layout-
and environment-based error-prone page elements.

• Experiments on 53 real-world apps validate the effective-
ness of the EP-Detector. The experimental results reveal
intriguing findings, with careful examination of typical
EPA cases showcasing the impacts of the detected EPAs.

II. MOTIVATING EXAMPLES

This section motivates our research by presenting three
types of error-prone user operations within the same Android
app. Illustrated in Figure 1 is the GUI of a well-known Chinese
banking app, exemplifying these irreversible error operations:

• EPA 1: When a user opens the app, she will be directed
to the home page. As shown in Figure 1 (a), an advertise-
ment dialog pops up on top of the actual home page. If the
user wants to close the advertisement and visit the home
page, she may find that the closing button is small and
somewhat hidden (as shown in (a)- 1⃝). This can result in
accidentally pressing the wrong area, which redirects the
user to the advertisement page instead.

• EPA 2: When the user visits the main operation page
and attempts to use the three-finger swipe for taking a
screenshot, provided by the Huawei Harmony to save the
key page information (as shown in (b)- 1⃝), the system

may mistakenly interpret it as a click due to the excessive
force of the first finger. This inadvertent click could
trigger the bank scan function ((b)- 2⃝), leading the app
to the scan page. If, coincidentally, a payment QR code
appears in front of the camera ((b)- 4⃝), the app will be
redirected to the payment transfer page.

• EPA 3: The user intends to visit the “My Payment” page
(as shown in (c)- 1⃝) to set the payment limit. However, if
the page loading is stuck due to for example the network
delay, the user may assume it’s her operation fault and
repeatedly click on the screen ((c)- 2⃝). When the “My
Payment” page eventually loads, these additional clicks
may inadvertently trigger actions if there are buttons
placed in the same position on the “My Payment” page
e.g., the payment scan button (as shown in (c)- 3⃝). As a
result, these unintended clicks lead the app to the payment
scan and subsequently to the payment transfer page if a
payment QR code is detected in front of the camera.

The above examples demonstrate that app design and im-
plementation may lead to user’s error-prone operations, which
result in irreversible and unexpected consequences that signif-
icantly reduce user experience and increase security risks.

III. PROBLEM DEFINITION

The entire process of EPA detection can be formally rep-
resented as a 3-tuple A = ⟨Q,Σ, δ⟩, where Q is the set
of execution states; Σ represents the set of events triggering
state changes; and δ : Q × Σ → Q refers to the state
transitions. The Σ contains three error-prone event groups
Eb, Ea, Ee (Eb ⊆ Σ, Ea ⊆ Σ, Ee ⊆ Σ) representing the
EPA events caused by behaviour, layout and environment,
respectively. Let E = Es|Eb|Ee be an EPA event group;
e1 and e2 are error-prone events within the same group
(e1 ∈ E ∧e2 ∈ E); s ∈ Q is an execution state; δ(s, e1) → st1
and δ(s, e2) → st2 are two state transitions triggered by e1
and e2 respectively, the EPA problem can be defined as:

Diff (st1, st2) > Γ, (1)

where the Diff is a differential function (defined later) for
computing the difference between st1 and st2; Γ is a given
threshold. The intuition is that if there exists e1 and e2 leading
to states that cannot be distinguished, then EPA occurs.

We require that: ❶ An execution state s ∈ Q is determined
by the current app page s.p and its corresponding execution
environment s.env, denoted as s ↑ (p, env); ❷ Each event e
must has a widget w in the page p with operable attributes
p(w).attrs (detailed in §IV-C) as its carrier, and the e has to
meet the p(w).attrs, denoted as e ; p(w).attrs.

IV. EP-DETECTOR

Given a target app, EP-Detector identifies EPAs for each
widget, through the following three modules, as shown in Fig-
ure 2. The Target Navigation module navigates to the target
pages and widgets relying on the page & widget identification.
To reduce cost, the Event Trace during the navigation is logged
in the Recorder to guide new navigation. The target pages and

widgets are then fed into the Detection Execution module to
simulate the execution paths triggered by the EPA-sensitive
events (defined in §IV-C). Finally, the Test Oracle module
incorporates an automated oracle to compute the Diff function
(Eq. (3)), determining the existence of three types of EPAs.
In this process, change of environment Envsim and page
similarity Psim before and after an event are computed. The
system environment is collected by the Resource Monitor,
and Psim is used to determine if a target page is reached in
Target Navigation and Detection Execution.

AUT

Target
Navigation

Resource Monitor

Detection Execution

Confusing Behaviour
(bEPA)

Unsuitable Layout
(aEPA)

Resource Overload
(eEPA)

Test Oracle

Diff for (bEPA, aEPA, eEPA)

s

Device ResourceAndroid Env

Recorder
pageID,widgetID, click, (122,736)
pageID,widgetID, click, (1327,212)
pageID,widgetID, longclick, (372,523)
pageID,widgetID, click, (449,789)

Event

Target Pages & Widgets

Two-stage
Navigation

Target
Identification

Trace

Page
Similarity

Fig. 2. The Workflow of EP-Detector.

A. Two-stage Navigation

To identify and locate widgets (e.g., buttons, text editors,
sliders) that may cause error-prone operations, EP-Detector
adopts a widget-exploration approach, deviating from the
typical path-exploration approach in the majority of existing
model-based GUI testing [19]–[23]. In this process, the Target
Navigation module incorporates two stages.

Stage 1: Page Navigation. Let s.p be the original page
where s is the execution state of an EPA detection, the target
page st.pt can be reached in a sequence of state transi-
tions ⟨δ(s, e11) → s11 , ..., δ(s1i , e1i) → s, ..., δ(s, ek1

) →
sk1

, ..., δ(skj−1
, ekj

) → st⟩, named as the Event Trace. Essen-
tially, we try to trigger each element in the original page in the
Breath First Search (BFS) way following the order of the page
layout. Each triggering of an element v leads to various states
(⟨δ(s, ev1) → sv1 , ..., δ(svi , evi) → s⟩) with a state transition
back to the original state s at the end. The event trace is the
concatenation of multiple element triggering transactions until
the target event is identified.

Stage 2: Widget Navigation. Once the target page p is
located, we proceed to identify the target widget p(w) by
matching its index. The widget is characterised by its error-
prone attributes p(w).attrs, which is used to initiate the error-
prone operations in the subsequent EPA detection by triggering
the corresponding event e ; p(w).attrs.

To reduce exploration overhead, optimization strategies are
implemented based on the following two observations.
Observation 1. Reversing to the previous state occupies a
great majority of page navigation tasks.

As shown in Stage 1, detecting the EPAs on a target
widget p(w) at state s requires triggering multiple error-
prone events at the page s.p forming an event trace. For

each triggering of an element v with transition ⟨δ(s, ev1) →
sv1 , ..., δ(svi , evi) → s⟩, EP-Detector ❶ collects detection
element information of svi for later steps; ❷ navigates to
the original s for next transition. One can observe that for
a given s there are many reverse transitions δ(svi , evi) → s.
This observation inspires the Optimization 1.

Optimization 1. Reverse transition δ(sv, e) → s is imple-
mented (by clicking the page-level back buttons) in the EPA
detection with the highest priority in page navigation.

Observation 2. Not all state transitions lead to new page
rendering when execution anomaly occurs.

If a system crash, app freeze, or failed rollback ocurs, the
reverse transition in Optimization 1 becomes invalid. To ensure
the page navigation still restart from the initial state s, we
record the navigation trace, which is a sequence of event-
widget pairs (ei, pi(wi)) where ei is a triggering event and
pi(wi) is the corresponding widget wi in page pi. The idea is
to leverage a space-for-time strategy for an express navigation
to the target page, ignoring the repeated page exploration.

Optimization 2. Each navigation trace for a target page
pt, i.e., ⟨(e1, p1(w1)), ..., (ei, pi(wi)), ..., (et, pt(wt))⟩ is
recorded in the Recorder module to guide subsequent
repeated navigation from the initial state.

B. Target Identification

The process of page navigation and widget navigation
involve frequent decision-making to determine whether the
target page or widget is reached, defined in page identification
and widget identification respectively.

1) Page Identification: In traditional model-based dynamic
testing, the page/state identification often relies on absolute-
matching. That is, the attributes of the target page/state is first
encoded using abstraction techniques e.g., hash code [19] or
customized template [20], [22]. Then a given page/state is
identified by matching the abstraction results. However, such
absolute-matching is often invalid in detecting real-world apps.
Observation 3. The attributes of the target page may change
if being repeatedly accessed. Formally, let s be an original
state, st and s′t be two target states transited from s with the
same event trace ⟨e1, e2, ..., ek⟩, we may have st.p.attrs! ≡
s′t.p.attrs, where ≡ denotes the identical relation and p.attrs
denotes the attributes of the page p.

This phenomenon is often observed in deep-interactive
apps, e.g, AcFun, Bilibili and Loklok, and its root-
cause lies in the updating of dynamic elements, e.g., ad-
vertisements, random animations, or page reconstruction. In
details, page updating during each rendering may: ❶ In-
crease/reduce attributes for localization, e.g., <elementId>,
<resourceId> and <class>; ❷ Modify the attributes
for content and action, e.g., <text>, <isEnable>
and <clickable>. Therefore, traditional attribute-based
absolute-matching may fail to identify pages, leading to de-
creased precision of navigation. This inspires us to explore

an relative-matching identification by introducing a Jaccard
Distance based page similarity:

Psim(pt, p
′
t) =

#(pt.attrs ∩ p′t.attrs)

#(pt.attrs ∪ p′t.attrs)
. (2)

If the Psim is larger than a given threshold τp, the target page
is identified. In practice, not all the page attributes are needed
in the computation. We prefer attributes for localization rather
than for content and action, due to their high stability during
the page reconstruction. The utilization of Psim spans across
multiple stages of EP-Detector:

• In the page navigation (§IV-A), the Psim is used to
identify the target page. This similarity-based navigation
is also frequently used in the computation of Diff.

• In the test oracle stage (§IV-D), the Psim plays a critical
role in computing the Diff function (Eq. (3)) that is relied
upon to automatically determine an EPA in the test oracle.
The function Diff calculates the differences between two
given states s and st by comparing the similarity of both
their page and environment, as they collectively define an
execution state (i.e., s ↑ (p, env) in §III). Therefore Diff
is computed as:

Diff (s, st) =1− (α× Psim(s.p, st.p)

+ β × Envsim(s.env, st.env)),
(3)

where Envsim(s.env, st.env) denotes the environment
similarity, defined in the following Eq. (4).

Envsim(n1, n2) =
∑

envi∈EnvSet

Zi ∆envi(n1, n2), (4)

where EnvSet is the set of environment factors, e.g.,
CPU, RAM and network; Zi is the normalization coeffi-
cient; ∆ computes the value change between n1, n2.

• In the detection execution stage (§IV-C), the Psim also
serves as state abstraction in EPA detection. Specifically,
pages exhibiting similarity within a predefined threshold
are treated as identical, and states sharing identical pages
are clustered together as the same page state.

2) Widget Identification: In the two-stage target naviga-
tion, once the target page is identified, the target widget
can be identified based on the types of widgets that are
frequently interacted with users, e.g., Button, Checkbox
and Scrollbar. However, such type-based identification
may fail in practical detection.
Observation 4. Not all interactive widgets are capable of ex-
ecuting the expected operations, necessitating their detection.

For example, a general ImageButton’s reaction to long
click depends on the long-clickable attribute setting,
rather than the Button type. Under this insight, the widget
identification of EP-Detector is attribute-based rather than
type-based. We consider a concise but effective attribute set
for widget identification specific for the EPA operations (listed
in Table I). The identification procedure contains four steps: ❶
Filter the widgets through the Status attributes; ❷ Determine
the operation behaviours through Action attributes (Note that
the Action attributes only cover EPA-related behaviours); ❸

TABLE I
EXTRACTED WIDGET ATTRIBUTES.

Type Name DType Type Name DType

ID element-id text Links href text

Action

clickable bool
Status

visibility category
scrollable bool displayed bool
checkable bool enabled bool

longclickable bool Size bounds numeric

Determine the operation area through Size attribute; ❹ Record
the ID for further check and comparison. Based on these at-
tributes, user behaviours under specific scenarios are simulated
and realized (see §IV-C1).

C. Detection Execution

The occurrence of an EPA requires the integration of three
core factors, i.e., subject, object and environment as stated
in §I. Under this philosophy, the EPA can be partitioned
into three types according to these factors, i.e., confusing
behaviours (bEPA), unsuitable layout (aEPA) and extreme
resources (eEPA), detailed in each subsection.

1) Confusing Behaviours: The types of user behaviours
working on widgets are complicated, making it challenging
to determine the confusing ones. Particularly it is difficult
to consider behaviors that may be interfered with by
natural factors such as voice control, voice input and phone
shaking, due to their high uncertainty. Therefore, our focus
is shifted to the user gesture events. Guided by the gesture
callbacks contained within gesture-related Android classes
(e.g., android.view.View [24], android.widget
[25], android.view.GestureDetector [26] and
MotionEvent [27]), we can summarize the user behaviours
associated with these callbacks. However, detecting all
behaviours for each widget is costly. Redundant and less
critical behaviours are filtered using the following strategies.

• For the behaviours with multiple directions, only the
most commonly used one is preserved, e.g., we preserve
upSwipe and filter out downSwipe.

• For similar behaviours, only the representative one is
preserved, e.g, we preserve swipe and filter out fling.

• The system-specific and rarely used behaviours, e.g.,
knuckle tap and twoFingerDoubleClick, are omitted.

As a result, 12 typical behaviours are collected, shown in
Table II, where the behaviour name starts with the number
“2” represents the behaviour has two operation directions, and
behaviours used with low-frequency in experimental trials are
denoted with “*”, appearing only in specific apps.

TABLE II
CONFUSING GROUPS OF COLLECTED BEHAVIOURS.

Category Gesture Widget Attributes

CLICK click, doubleClick, twoFingerClick*, longClick, swipe clickable, checkable
LONGCLICK longClick, click, swipe, twoFingerLongClick* long-clickable

SCROLL 2scroll, 2swipe, 2twoFingerSwipe*, pinchOpen* draggable, scrollable

The behaviours are divided into three confusing groups:
CLICK, LONGCLICK and SCROLL based on their confu-
sion degree, defined as follows:

Definition 1. Confusion Degree. Given two user behaviours
ha and hb, their confusion degree is the sum of
their distances on the four operation dimensions—
the number of operations opN , number of fingers
opF , operation distance opD and duration opT , i.e.,
conf(ha, hb) =

∑
opX∈OP |ha.opX − hb.opX|, where

OP = {opN, opF, opD, opT}.

The values of opN and opF are obtained by a simple count-
ing of the behaviour. opT and opD are discretized coarsely
based on their semantics. For opT , “standard” and “long” are
quantified as 1 and 2; for opD, only “in-place operations” and
“operations with distance” are distinguished, quantified as 0
and 1 respectively. For example, the {opN, opF, opD, opT}
of doubleClick and swipe are {2, 1, 2, 0} and {1, 1, 2, 1}
respectively, and their confusion degree can be computed as
|2 − 1| + |1 − 1| + |1 − 2| + |0 − 1| = 2. The confusing
behaviours are identified based on their pairwise confusion
degree. Each group has a basic behaviour (underlined in
Table II) h; additional behaviours hx in the same group are
identified if the equation conf(h, hx) <= 2 holds.

After that, the confusing behaviours in the same group are
simulated one by one, whose results are recorded for the
determination of bEPAs by the following Test Oracle. The
basic behaviour simulation is implemented by calling APIs
in appium. But there are no available APIs for operations
like doubleClick and twoFingerSwipe; they are achieved by
simulating the combination of basic behaviours.

2) Unsuitable Layout: Unsuitable widget design prone to
EPAs encompass a range of factors [28], including colour,
shape, size, spacing and textual states [29]. However, only
layout-related factors, e.g., size and spacing, can be checked
through dynamic detection, which are the primary focus of EP-
Detector. EPAs triggered by unsuitable layout is called aEPAs.

Definition 2. Unsuitable Layout. Given the center point pc of
the target widget wt, the minimum width widmin(wt) of wt is
defined as min{Dis(pc, px)|px ∈ Pt}, where Pt is the set of
boundary points of wt. Assuming that wn is another widget
closest to wt, the minimum spacing distance spcmin(wt, wn)
between wt and wn is defined as min{Dis(pc, pn)|pn ∈ Pn},
where Pn is the set of boundary points of wn. An unsuitable
layout is the widget design that satisfies both cond1 and cond2,
where cond1 : widmin(wt) < τw violates the specified safe
distance for widget size τw, and cond2 : spcmin(wt, wn) < τs
violates the safe space between widgets τs.

Figure 3 illustrates typical cases of unsuitable layout: (a)
refers to a suitable widget size (i.e., !cond1); (b) indicates an
unsuitable size but suitable spacing (i.e., cond1 & !cond2);
(c) indicates an unsuitable layout (i.e., cond1 & cond2). From
this figure, we can also see that we only need to use τw in
defining the safe area, as τs serves the purpose.

Definition 3. Safe Area. Given a center point pc of the target
widget wt, the safe area for wt is a circular area with the
center being pc and the radius being τw.

Widget-A
24dp

Widget-A
Widget-A

Widget-B

24dp Widget-A

Widget-C

24dp

(b) cond1 & !cond2 (c) cond1 & cond2 (d) Dynamic Test

24dp

(a) !cond1

Widget-A

Safe Area
Safe Area

Safe Area Safe Area

Fig. 3. Cases of Unsuitable Layout.

The τw can be determined through the guidance of Android
suggestion for accessible user experience [30], where they
recommend that each interactive UI element should have a
focusable area, or touch target size, of at least 48dpx48dp.
Thus, the τw is set to the same size value accordingly.

The unsuitable design can be detected statically during the
page navigation, since the boundary of the target widget can
be captured through parsing the layout .xml tree. However,
in static detection, we could not observe the aEPAs and their
properties like location. Hence, dynamic operation simulation
is used in EP-Detector. As shown in Figure 3(d), we could
guide the dynamic simulation of operations to approach the
boundary of safe area and evenly distributed in the safe area,
to avoid the location concentration of simulated operations.

3) Resource Overload: Insufficient device resources for app
running, e.g., CPU, RAM and network capacity, can result in
EPAs. For instance, when the device resources are overloaded
and about being exhausted, execution anomaly such as page
freezing and operation failing, are prone to occur, interrupting
user operations and leading to misoperations. In response to
execution anomalies, users commonly resort to continuous-
and-repeated (c&r) operations, despite their high-risk nature.
This practice results in two types of eEPAs shown in Figure 4.

Heavier Overload. As indicated in Figure 4(a), the c&r
operations on the same widget of a frozen page would incur
heavier overload on running resources, e.g., CPU, RAM
and network, which can raise further irreversible running
exceptions, e.g., system crash and data loss.

Unintended Misoperation. As indicated in Figure 4(b), the
c&r operations are first performed on the frozen page A.
When the page suddenly jumps, it is difficult for a user to
realize in time that the user may mistakenly apply the same
c&r operations to the same position on the new page B,
resulting in an unintended exception.

The two types of eEPAs that triggered by real running
environment are hard to be checked by static analysis. So
EP-Detector employs a dynamic analysis to detect them,
which includes three steps. ❶ Try to click the widgets with
clickable=true on page A, and checks whether page
A jumps to another page B. ❷ If no jump occurs, continu-
ously simulate identical click operations and performs them at
the same position of page A for 5 times, with the interval

(a) Heavier Overload

Overload

c&r
operations

Running
resouces

(b) Unintended Misoperation

Page B jumped from page A

A sudden
transition

Freezed page Freezed page A

c&r ops on
widget wt

Fig. 4. Two Types of eEPAs.

of 0.3s (the value of times and interval correspond to the
average c&r frequency and speed of humans, respectively
[31]); simultaneously monitoring the changes of CPU, RAM
and network speed. ❸ If a jump occurs, simulate the click
operation at the same position of page B and monitors
whether a new state transition happens. Note that, for the
sake of cost-efficiency, EP-Detector only supports click sim-
ulation in the detection. In implementation, EP-Detector uses
Thread.sleep() to suspend the UI main thread to
simulate the page freezing.

D. Test Oracle

EP-Detector supports an automated test oracle, where the
function Diff (Eq. (3) in §III and §IV-B) is computed using
different strategies for the three types of EPAs.

Detection of bEPA. Given current state s and a pair of
confusing behaviours (e1 and e2) from the same behaviour
group in Table II, the test oracle aims to determine whether
(Diff (s, δ(s, e2))) > τ ∧ Diff (δ(s, e1), δ(s, e2)) > τ holds.
If it does, a bEPA is found. The underlying rationale is that
once the new page triggered by the confusing behaviour (e2)
is neither the same as the original page (s) nor the same as
the page triggered by the basic behavior (e1), it could lead to
undesirable consequences.

Detection of aEPA. Given current state s and a pair of
identical operations on safe area (§IV-C2) (e1 and e2), the test
oracle aims to determine whether Diff (δ(s, e1), δ(s, e2)) > τ
holds. If it does, an aEPA is found. The underlying principle is
that two identical operations within the safe area should lead
to the same outcomes; otherwise, it could result in anomalies.

Detection of eEPA. The test oracle contains two parts: ❶
Heavier overload. Assuming s and s′ are the states before
and after c&r operations respectively, the oracle determines
whether Envsim(s.env, s′.env) < τenv holds; ❷ Unintended
misoperation. Through page identification, the test oracle first
checks if a page jump from page A to page B occurs when
c&r operations are performed. Then assuming s and s′ are
the states before and after operating on page B respectively,
the oracle determines whether Diff (s, s′) > τ holds. If both
conditions are satisfied, an eEPA is found. The principle here is
that an unintended page jumping accompanying with a heavier
overload causing significant environment changes may result
in risky consequences.

Determining α and β. To calculate the Diff function, in ad-
dition to computing Psim and Envsim following their formula
Eq (2) and Eq (4), we need to determine the parameters α and

β. Except for the detection of heavier overload, the parameters
α and β in Diff formula (see Eq. (3)) are determined in a
dynamic way as follows.

{α, β} =

 {1, 0}, Psim < τp
{0, 1}, Psim > τp & Envsim < τenv
{0.5, 0.5}, otherwise.

(5)

V. IMPLEMENTATION

EP-Detector is implemented in Python 3.8 with more than
4k lines of code excluding library files. It adopts existing
API support libraries, including the Appium dynamic test
API, the ADB screenshot command, the cv2 command for
drawing points, the xml.etree plugin for parsing xml files,
the subprocess pipeline command for sending ADB commands,
etc. Specifically, to meet the detection request of bEPA,
extra user behaviours are simulated and customized based on
the Appium, including drag-and-drop operations and multi-
touch interactions. The experiments are conducted on multiple
versions of Android (i.e., Android 11.0, 12.0 and 13.0). The
test device is equipped with 8GB RAM and 8 cores CPU.

Following the approach in §IV, for each app target, we first
navigate to each widget to trigger all designed simulated events
in each type of EPA, and uses the test oracle to determine
the EPAs. To decide the best values for the parameters—τp
(Page Identification), τ and τenv (Test Oracle), a common-used
parameter optimization method—grid search, was employed
to fine-tune these parameters with a step of 0.1 within an
imperial value range 0.1 − 0.5 for τ and τenv and 0.5 − 0.9
for τp. Optimal performance in EPA detection was observed
when τp = 0.8, τ = 0.2 and τenv = 0.3, where 92.0% of the
EPAs and 76.7% page states were accurately identified on 30
testing pages.

VI. EVALUATION

Based on the results of the above execution, the EP-
Detector is then evaluated from four perspectives: precision,
completeness, efficiency and severity of the detected EPAs.

A. Precision

1) Benchmark: To ensure the fairness and effectiveness of
the evaluation, we select the evaluation benchmark with the
following three rules. ❶ Comparability: Collect the three apps
(in Loc) evaluated by the existing dynamic GUI testing works
[20] [32], i.e., WordPress, K-9 Mail, and MyExpense.
❷ Prevalence: Collect the top apps with download amounts of
no less than 100k. ❸ Comprehensiveness: To balance the cov-
erage of both categories and complexity, the collected apps are
evenly distributed across 9 functional categories; the number
of pages in the apps is evenly distributed across the intervals
[0, 10], [10, 30] and [30,∞]; the apps should be collected
from multiple markets. Following these rules, we collect 5
popular apps for each category in Google Play, and 5 top
apps in Chinese Market, i.e., WeChat, AliPay, Bankcomm,
Bilibili and UC Browser. At last, 53 eligible real-world
apps are collected as the benchmark.

2) EPA Confirmation: The detection outcomes of EP-
Detector are automatically marked EPAs on the anomalous
widgets of GUI screenshots, which need to be manually veri-
fied. We recruited 3 volunteers with rich experience in using
mobile systems in our college to conduct the confirmation.
To ensure the fairness of the confirmation, we conducted
necessary training for the volunteers, which was mainly di-
vided into three stages: ❶ Familiarize the volunteers with
the process of target navigation and EPA detection, especially
with the detection indicators introduced in test oracle (§IV-D).
❷ Randomly select 60 existing EPA samples (20 for each
type of EPA) for them to identify. If one sample is identified
incorrectly, an additional 5 samples are added to identify
until they are all identified correctly. ❸ Ensure that each
detected EPA and navigated page are confirmed by at least
two volunteers. If there is contradiction, the third volunteer
or the author completes the final confirmation. In total, the
manual confirmation for both page states and detected EPAs
takes 23 ∗ 8 hours.

3) Results: The apps with detected EPAs in the benchmark,
along with their precision computed after confirmation, are
presented in Table III. The overall precision (88.28%) is
encouraging, which indicates the EP-Detector can significantly
assist in saving on manual inspection efforts in detecting
the EPAs. Among the three types of EPAs, the tool has the
highest accuracy in detecting bEPAs (91.52%), and the lowest
accuracy for eEPAs (85.81%). This is mainly because the oc-
currence of eEPAs requires specific runtime environment, and
it is difficult to ensure the stability of the system environment
consistently during app operation. In contrast, the detection of
bEPAs focuses only on a few operations in specific positions
on the page, reducing the likelihood of confused operations
during the detection. To delve deeper into the limitations of
EP-Detector in the detection precision, we randomly select
100 (about 20%) of the false positive cases and analyze their
underlying causes, which are summarized as follows:

• Nearly half of the false detected cases (47/100) are
caused by the intersecting influences among specific
system resources or execution processes. For example, the
continuous use of network resources by streaming media
on the target page may lead to confusion in resource
consumption when detecting EPAs on other widgets on
the page, resulting in falsely reported anomaly.

• Nearly a third of the false cases (34/100) result from
settings for resources (e.g., RAM and network traffic)
and similarity parameters (e.g., τ and τenv in §IV-C).
Variations in widget functionalities lead to different de-
grees of resource consumption. Setting a low threshold
may cause EP-Detector to falsely label healthy widgets as
error-prone (false positives), while a high threshold may
result in overlooking EPAs (false negatives).

• The remaining nearly 1/6 false cases are mainly raised
from extraneous factors such as interruptions of system-
level events and abnormal fluctuations in network.

We would like to highlight that these false positives do not

TABLE III
PRECISION PERFORMANCE OF EP-DETECTOR IN EPAS DETECTION.

App Size Download % Precision of Detected EPAs

(MB) aEPA bEPA eEPA Total

iTranslate 5.7.2 114.8 50M+ 100 (3/3) 86.49 (32/37) 89.83 (53/59) 88.89 (88/99)
Battery HD Pro 1.99.15 17.5 100K+ 100 (3/3) 95.83 (23/24) 97.87 (46/47) 97.3 (72/74)

Memo 2.9.7 6.41 10M+ 0 (0/4) 88.46 (23/26) 86.21 (25/29) 81.36 (48/59)
Notepad 1.33.1 6.6 10M+ 71.43 (5/7) 90 (18/20) 50 (1/2) 82.76 (24/29)

Car Launcher 3.4.1.24 24.8 1M+ 50 (2/4) 87.5 (14/16) 69.23 (9/13) 75.76 (25/33)
Bankcomm 8.0.0 186.7 50M+ 79.69 (51/64) 98.25 (56/57) 75.44 (43/57) 84.27 (150/178)

Days Matter 1.18.19 30.5 1M+ 100 (1/1) 100 (17/17) 85.71 (18/21) 92.31 (36/39)
Alipay 10.5.76 136.8 10M+ 85.6 (143/167) 88.89 (80/90) 84.38 (27/32) 86.51 (250/289)

Everydoggy 1.71.2 30.8 500K+ 56.52 (13/23) 84 (21/25) 54.05 (20/37) 63.53 (54/85)
Frandroid 6.0.13 27.8 500K+ 100 (13/13) 100 (7/7) 100 (0/0) 100 (20/20)

QR 2.2.58 9.8 500M+ 100 (2/2) 66.67 (2/3) 100 (1/1) 83.33 (5/6)
GJJ 3.12.0 33.7 100K+ 78.26 (18/23) 100 (171/171) 88.36 (167/189) 92.95 (356/383)

Right Gallery 5.0.4 34 100K+ 100 (8/8) 95.83 (23/24) 100 (0/0) 96.88 (31/32)
Google Books 193791 19.2 100M+ 88.24 (30/34) 66.67 (6/9) 72.73 (24/33) 78.95 (60/76)
Google Maps 11.120 180.4 10B+ 100 (19/19) 95 (19/20) 93.33 (14/15) 96.3 (52/54)

Google Translate 8.4.75 33.5 1B+ 100 (25/25) 88.46 (23/26) 89.47 (17/19) 92.86 (65/70)
Gmail 614808802 137 10B+ 100 (9/9) 100 (29/29) 100 (2/2) 100 (40/40)

Google Earth 10.46.0.2 49.1 500M+ 91.67 (22/24) 80.56 (29/36) 64.29 (9/14) 81.08 (60/74)
GCamator 5.1.17 14.3 10M+ 95.24 (20/21) 98.15 (53/54) 66.67 (10/15) 92.22 (83/90)
Listen Free 1.8.7 34.8 100K+ 66.67 (8/12) 87 (87/100) 91.15 (103/113) 88 (198/225)

IQilu 0.2.23 94.2 100K+ 100 (24/24) 64.29 (45/70) 85.53 (260/304) 82.66 (329/398)
Jetour Traveller 3.2.9 212.6 1M+ 33.33 (8/24) 94.69 (107/113) 85.63 (143/167) 84.87 (258/304)
Komorebi Memo 4.5 23.4 5M+ 100 (8/8) 100 (8/8) 100 (5/5) 100 (21/21)

Photo Editor Pro 6.7.5.1 70.9 10M+ 100 (1/1) 96.77 (60/62) 96.25 (77/80) 96.5 (138/143)
LINE Webtoon 3.2.1 39.1 100M+ 89.36 (42/47) 76.92 (20/26) 70 (7/10) 83.13 (69/83)
Car Scanner 1.105.1 77.3 10M+ 33.33 (1/3) 85.19 (23/27) 76.92 (10/13) 79.07 (34/43)
PicsArt Studio 1.0.2 25.8 1B+ 100 (9/9) 91.3 (84/92) 85.61 (119/139) 88.33 (212/240)

Pleco 3.2.93 135.3 5M+ 82.86 (29/35) 87.72 (50/57) 55.17 (16/29) 78.51 (95/121)
Music Speed 12.0.0b5 17.9 10M+ 50 (1/2) 66.67 (6/9) 80 (4/5) 68.75 (11/16)

News 9.5.8 76.7 900M+ 94.12 (16/17) 84.21 (16/19) 66.67 (4/6) 85.71 (36/42)
Mangasuki 1.5d 8.1 100K+ 75 (3/4) 91.18 (31/34) 96.67 (29/30) 92.65 (63/68)
WeChat 8.0.47 252.4 100M+ 90.2 (138/153) 95.19 (178/187) 95.1 (194/204) 93.75 (510/544)

China Daily 8.0.8 14.2 1M+ 100 (3/3) 97.56 (40/41) 100 (45/45) 98.88 (88/89)
Skyeye 13.12.10 40.3 100M+ 100 (1/1) 100 (11/11) 92.59 (25/27) 94.87 (37/39)

UC Browser 16.2.1 100.5 800M+ 96.08 (49/51) 96.97 (32/33) 100 (0/0) 96.43 (81/84)
Weather 5.4.4 46.03 1M+ 50 (1/2) 66.67 (2/3) 100 (3/3) 75 (6/8)

Lazycook 3.0.0 12.6 50M+ 93.88 (46/49) 100 (69/69) 88.31 (68/77) 93.85 (183/195)
Zillow Map 15.6.0 180.6 10M+ 89.47 (17/19) 62.5 (5/8) 37.5 (3/8) 71.43 (25/35)

FaceApp 11.9.3 83.3 500M+ 100 (1/1) 100 (18/18) 94.44 (17/18) 97.3 (36/37)
Raise to Answer 3.6.5 2 100K+ 100 (0/0) 90.91 (10/11) 100 (0/0) 90.91 (10/11)

MultiNotes 2.87 38.9 5M+ 85.71 (6/7) 40 (4/10) 33.33 (1/3) 55 (11/20)
LanDroid 1.43 0.2 500K+ 91.67 (11/12) 90 (36/40) 67.74 (21/31) 81.93 (68/83)

SocksDroid 1.0.3 0.8 500K+ 66.67 (2/3) 100 (26/26) 0 (0/1) 93.33 (28/30)
AnyMemo 10.11.7 4.6 100K+ 95 (19/20) 92.31 (12/13) 100 (4/4) 94.59 (35/37)
Lumii 1.630.149 32 50M+ 100 (2/2) 88.24 (15/17) 94.74 (18/19) 92.11 (35/38)
Motolog 3.20.9 11.2 100K+ 91.67 (11/12) 94.44 (17/18) 50 (2/4) 88.24 (30/34)
ZArchiver 1.0.9 4.9 100M+ 100 (5/5) 94.74 (72/76) 100 (2/2) 95.18 (79/83)
TuneIn 33.6.3 84.5 100M+ 85.71 (18/21) 93.1 (54/58) 69.23 (9/13) 88.04 (81/92)
Loklok 1.7.1 44.1 5M+ 100 (5/5) 94.2 (130/138) 84.71 (144/170) 89.14 (279/313)

WordPress 24.4 167.4 10M+ 96.97 (32/33) 95.08 (58/61) 88.46 (46/52) 93.15 (136/146)
K-9 Mail 6.801 9.6 5M+ 100 (13/13) 90.48 (38/42) 100 (0/0) 92.73 (51/55)

MyExpense 3.3.7 10.79 1M+ 88.46 (46/52) 96.36 (53/55) 92.68 (38/41) 92.57 (137/148)
Bilibili 3.16.0 171.5 800K+ 77.97 (46/59) 77.14 (54/70) 79.85 (107/134) 78.71 (207/263)

Average 60.8 492.9M+ 86.74 (19/22) 91.52 (40/44) 85.81 (38/44) 88.28 (97/110)

necessarily indicate significant precision flaws in EP-Detector.
On the one hand, the intersecting influences and extraneous
factors are difficult to completely eliminated during app exe-
cution. On the other hand, the trade-off raised by parameters
belongs to the inherent challenge in the bug detection tasks,
and we have mitigated the performance degradation through
various techniques, such as grid search in §VI.

Summary: EP-Detector shows a high effectiveness in EPA
detection with an average precision of 88.28%. The factors
that constrain the precision include intersecting influences,
parameter settings and work-extraneous impacts.

B. Completeness

The completeness is evaluated from two perspectives: the
coverage of page state and the detection false positive.

1) Coverage of Page State: To evaluate the coverage of
page state, we compared EP-Detector with two widely-used
dynamic GUI testing tools, Stoat and APE. Stoat [19] simu-
lates user-device interactions by constructing a random finite
state machine model of the apps with both static and dynamic
analysis. APE [20] is a dynamic GUI testing framework
employing decision tree to represent dynamic page states.

Metric. The coverage of page state is measured by the ratio
of the explored page states to the total ones. Note that to

alleviate navigation redundancy, the page states with Psim >
τ are treated as the same page state.

Benchmark. When Stoat and APE were used to test the
benchmarks, some apps frequently crashed or stopped mid-
way (might be raised by the incompatibility to the Android
version). To ensure fair comparison, we conducted an in-depth
analysis of 10 apps that are fully tested on both frameworks.

EP-Detector APE Stoat
10
20
30
40
50
60
70
80
90

100

(%
)

(a) Coverage of Page State

EP-Detector APE Stoat
0

5

10

15

20

25

(b) Average Number of Page States

 EP-Detector
 APE
 Stoat

Fig. 5. Comparison of Page Coverage.

Results. As illustrated in Figure 5 (a), the coverage per-
formance of EP-Detector is slightly better than the other two
methods, which achieves an average coverage rate of 60.40%,
surpassing APE’s 55.45% and Stoat’s 47.52%. Through man-
ual confirmation, there are 101 valid page states in total
(detailed in Table III), where EP-Detector detects 61 of them,
averaging 6.1 page states per app (illustrated in Figure 5 (b)).
To ensure the effectiveness of the simulated operations, EP-
Detector neither employs tree-based abstraction like APE nor
uses a dynamic-static hybrid method like Stoat. Instead, EP-
Detector employs a novel approach through comprehensive
widget navigation and fine-grained similarity calculations to
achieve promising page coverage during the simulation of
error-prone operations. We also carefully analyzed the page
states that were not navigated, primarily due to two reasons:
First, some page states require to be triggered by events that
are difficult to simulate, such as password authentication and
QR code input. Second, dynamic widgets (e.g., ad widgets)
that vary in each round of visiting significantly disturb the page
navigation, occasionally making target pages unreachable.

Summary: EP-Detector achieves an average coverage rate
of 60.40%, surpassing APE’s 55.45% and Stoat’s 47.52%.
The failed page navigation mainly attributes to specific
events and dynamic widgets.

2) False Negative: Due to the absence of dedicated de-
tection work and complete ground truth for EPAs, directly
identifying false negatives of the EP-Detector outcomes is
challenging. To alleviate this evaluation challenge, we inves-
tigate a widely used industry product—Google Accessibility
Scanner [33], which partially overlaps with EP-Detector in
detecting EPAs. The Accessibility Scanner evaluates widgets
from three perspectives: color contrast, labeling for guidance
and touch size.

The detection results for the benchmark of 10 apps is de-
picted in Figure 6. EP-Detector identified 417 confirmed EPAs,
whereas Accessibility Scanner detected 362 anomalies, with
156 aEPAs being identified by both tools. Unlike EP-Detector,

AS EP
0

10

20

30

40

50

60

70

N
u

m
b

er
 o

f
E

P
A

s

Google Translate

21

14

65

AS EP
0

10

20

30

40

50

60

N
u

m
b

er
 o

f
E

P
A

s

Google Earth

32

58

12

AS EP
0

5

10

15

20

N
u

m
b

er
 o

f
E

P
A

s

Komorebi Memo

21

2

AS EP
0

2

4

6

8

10

12

14

16

N
u

m
b

er
 o

f
E

P
A

s

QR

15

5

4

AS EP
0

10

20

30

40

50

60

70

80

90

N
u

m
b

er
 o

f
E

P
A

s

GCamator

75
83

53

AS EP
0

2

4

6

8

10

N
u

m
b

er
 o

f
E

P
A

s

Raise to Answer

3

10

AS EP
0

10

20

30

40

50

60

N
u

m
b

er
 o

f
E

P
A

s

Everydoggy

56

27

54

AS EP
0

5

10

15

20

25

30

N
u

m
b

er
 o

f
E

P
A

s

SocksDroid

11

28

AS EP
0

20

40

60

80

N
u

m
b

er
 o

f
E

P
A

s

LanDroid

90

33

68

AS EP
0

10

20

30

40

50

60

N
u

m
b

er
 o

f
E

P
A

s

Car Launcher

57

25

10

 by EP

 by AS

 by Both

Fig. 6. Result Comparison between Accessibility Scanner and EP-Detector.

Accessibility Scanner detects EPAs solely through static anal-
ysis of widget attributes (e.g., android:background,
android:layout and android:text). For that reason,
it hardly detects the bEPAs (135 confirmed) and eEPAs (93
confirmed) which requires dynamic operation simulation. As
to the area-related anomalies, the Accessibility Scanner reports
significantly more results (362 vs. 189) than EP-Detector,
especially for the typical two apps Car Launcher and QR.
Except for the anomalies raised by the color contrast and
label hint, the Accessibility Scanner checks 174 touch size-
related anomalies, where 18 of them cannot be checked by
EP-Detector. From further analysis, the touch sizes of 14
(out of the 18) detected widgets are indeed smaller than the
standard, but there are no other widgets within their safe areas,
which are unlikely to cause error operations. The remaining 4
anomalies are identified as the false negatives of EP-Detector.
Through careful analysis, the overlooked EPAs are raised by
the invalid simulated operations under the slow network and
laggy system.

Summary: EP-Detector reports significantly more con-
firmed EPAs than Accessibility Scanner in detecting 10
typical apps, but still have 4 aEPA false negatives due to
invalid simulation.

C. Efficiency

To assess the efficiency of EP-Detector, we have recorded
the time consumption details during the detection of 53 apps,
illustrated in Table IV. On average, each app costs about 6.3
hours, which is acceptable for offline testing compared to
existing dynamic testing works [20] [32]. The efficiency is
significantly influenced by the number of pages and widgets.
For example, WeChat spends the longest detection time with
19.4 hours, attributed to its substantial 108 page states and
1604 widgets. For detailed analysis, among the modules and
stages of EP-Detector, the target navigation is the most time-
consuming module, accounting for 65.1% of the total time.
This is primarily due to the BFS-based navigation, which
initiates numerous restarts from the original page (§IV-A). De-
spite optimizations implemented including simulating reverse
transition and building trace recorder, the time consumption
for this part remains substantial.

TABLE IV
AVERAGE EFFICIENCY OF EP-DETECTOR IN EPA DETECTION.

App(hr) # Page(min) # Widgets(min) # Navigation(hr) Oracle(hr) # Exec(hr)

6.3 24.8 1.1 4.1 1.3 0.9

(a) Positions of O2T and

Video Acceleration Widgets.

(b) Animation Prompt by

Video Acceleration Event.

(c) Animation Prompt by

O2T Event.

Fig. 7. aEPAs Caused by One-click Triple-interaction and Video Acceleration.

Summary: The efficiency of the EP-Detector is overall
acceptable for offline detection, with 6.3 hours per app
and 24.8 minutes per page. However, the time overhead of
specific apps may be significant due to complex app design.

D. Severity

From Table III, EP-Detector on average detects 96.91 con-
firmed EPAs for each app, with one EPA identified for every
two widgets. The aEPAs are the least prevalent in the apps,
with only 19.04 per app and 1.87 per page, while bEPAs are
the most common ones, with an average of 39.94 per app
and 3.91 per page. Apps with simple page layouts, like QR,
Weather, typically have few (less than 10) EPAs, which
aligns with intuitive expectations. On the contrary, apps like
Alipay and WeChat have a high prevalence of EPAs (more
than 200), due to their integration of hundreds of services and
numerous widgets for navigating to other services.

Upon further analysis of the potential consequences of
these EPAs, we discovered that some operations could directly
pose security threats, e.g., undesirably clicking a payment
button, while others might only affect user experience, e.g.,
mistakenly opening an unwanted page. Figure 7 illustrates
a security-related aEPA from Bilibili detected by EP-
Detector. The functionalities of one-click for triple hit (O2T)
and video acceleration are designed to be triggered by the
longClick event on two small buttons with overlapped safe
area (illustrated by the grey dot and red frame in Figure 7(a)).
This unsuitable layout could result in unintended acceleration
(Figure 7(b)) or an irreversible loss of Bilibili Coins
against one’s will (Figure 7(c)).

This inspires us to further explore the types and distribution
of the consequences triggered by EPAs. By an in-depth study
on the detected EPAs, we conclude 5 categories of potential
harmful consequences: Security (Sec), Functionality (Fun),
Advertising (Adv), Efficiency (Eff) and User Experience (Use).

0.7 1.9 0 1.7 3.6

1 1 2.4 4.2 3.3

1.6 1.1 0.1 3.4 4

1.4 0.7 1.5 5.5 2.4

0.4 2.2 0 4.1 2.6

0 4.3 1.3 1.7 2.7

1.9 3.1 5.1 2 2.7

0.7 1.1 0.4 5.3 2.3

4.4 0.8 2.4 3.2 3.8

Sec (12.1)

Fun (16.2)

Adv (13.2)

Eff (
31.1)

Use (27.4)

Productivity (7.9)

E-commerce (11.9)

Utility (10.2)

Streaming Media (11.5)

Image (9.3)

IoT (10.0)

System Tools (14.8)

Reading (9.8)

Payment (14.6)

0.000

0.8600

1.720

2.580

3.440

4.300

Cscore (%)

Fig. 8. Relation between Consequences & App Categories.

Combined with the categories of apps, we compute a fine-
grained proportion named CScorei,j (defined as Eq.(6)), to
indicate the distribution across different types of consequences.

CScorei,j =
Nij∑

i∈CSet,j∈ASet Nij
(6)

where Nij denotes the number of the EPAs in the i-th con-
sequence type and j-th app category; CSet and ASet denote
the set of consequence types and app categories respectively.
The overall distribution is illustrated in Figure 8. It can be
observed that the Cscore of serious consequence categories—
Sec 12.1% and Fun 16.2%—are smaller compared to others,
but the total counts of these categories (621 and 832) are
significant. Although these consequences are only potentially
triggered, they deserve the attention of both developers and
users. We provide related suggestions in the following section.
We can also observe that the payment apps (e.g., Alipay,
Bankcomm and WeChat) exhibit a higher prevalence with
security consequence, accounting for 30.1% among app cat-
egories. Interestingly, EP-Detector didn’t discover any EPA
with advertising consequence in the Productivity apps, but
detected many such EPAs in System Tools. By careful analysis,
the advertising consequence tends to be triggered by unin-
tended operations on simplified page with singular function-
ality. The system tools provide many such scenarios, such as
battery testing, file management and network monitoring.

Summary: EPAs are significantly prevalent in current real-
world apps (an average of 96.91 per app) with nearly one
EPA for every two widgets, and their number increases with
the complexity of the app pages. The EPAs capable of
causing security and functionality consequences are in the
minority (28.3%), but their total counts (621 and 832) are
considerable.

VII. THREATS TO VALIDITY

Detection Efficiency. Both widget navigation and simu-
lated operations employed in EP-Detector are time-consuming.
Although optimization strategies like page-level abstraction,
behaviour grouping for bEPA, and simplified operations for
aEPA/eEPA, have been applied, detecting a single page still
costs 5.6 minutes on average. Dozens of hours are spent on
detecting large-size real-world apps, e.g, WeChat with 238

pages. Exploring efficient navigation for example using static
analysis could scale up the approach as a future improvement.

Failed Pages. Due to delays in page rendering and interrup-
tions from advertising, a small number of pages and their event
traces cannot be recorded into the Recorder, leading to failed
detection of these pages. A potential future improvement is to
set a Failed Checker to detect the page failure and mark the
triggering traces for further investigation.

Customized Behaviours. Customized third-party systems
and specific apps are not supported in the current version
of EP-Detector, due to their rare emergence in practical use.
To support them, a way is to add a detection Dispatcher
compatible to the customized behaviours according to the
attributes of the target system and app.

VIII. RELATED WORK

A. GUI Test in Android

The event-driven nature of Android apps increases the
complexity of its execution routines, making GUI-based dy-
namic testing a challenging task. Traditional GUI-based testing
approaches [1], [34]–[38] tend to simulate user operations
and system events using frameworks provided by Android,
e.g., Monkey [39] and its variants [40], [41], to achieve
enhanced testing accuracy and optimized performance. To
further improve the test coverage and expose more crash-
ing bugs, model-based GUI testing is proposed [19]–[23],
[42], [43] to exhaustively explore the the execution paths
through abstracting the app behaviours guided by a model
and enforcing various user/system interactions. Subsequently,
non-crashing functional bugs, stemming from execution logic
errors, have received increasing research attention [13]–[15],
[33], [44], as they significantly affect user experience [45]. The
functional bugs are triggered in rare program paths, which is
difficult to capture using the traditional test models. Hence,
fine-grained attribute-targeted test tactic such as metamorphic
fuzzing [46]–[48] and state differential analysis [14], [15]
are employed to generate task-oriented test inputs. The EPAs
in this work are anomalies rooted from both crashes and
functionality logic errors. The widget-centric navigation is
inspired by the existing attribute-targeted exploration.

B. Oracle for Android Testing

Dynamic app testing necessitates automated test oracle to
explore and confirm the test results efficiently. The test oracle
must be adaptable to different testing goals. For instance, to
detect security vulnerabilities [7], [16], [17], the oracle often
compares the test results with given fingerprint features of the
ground-truth in benchmarks. To detect crash bugs [8]–[10],
the oracle monitors the sharp changes of the device status
and evaluates them with a given threshold. The detection of
non-crashing functional bugs [13]–[15], [49] commonly needs
to perceive the gap between the page under test and the
expected page, requiring the oracle to compare page elements
or attributes. For vision-related page checking, the oracle
usually employs straightforward visual comparison between
screenshots of critical execution points [50]–[55]. These works

maintain independent GUI scripts for the identification of
testing targets. The EPA detection is a novel testing problem
involving collecting page widgets and monitoring of device
environment. Therefore, the test oracle in the EP-Detector
integrates multiple comparison strategies targeting at attributes
of page widgets and resource status of devices.

IX. CONCLUSION

This work systematically studies three types of error-prone
operation anomalies (EPAs) in Android applications. Using
dynamic GUI detection and automatic monitoring, an auto-
mated detection tool EP-Detector is developed to facilitate the
study of EPAs, which utilizes multiple optimization strategies
and EPA-oriented detection designs. Using EP-Detector, 5136
error-prone operations are detected in 53 commonly used real-
world Android apps, illustrating the prevalence and severity
of the EPAs. As future work, we plan to integrate the static
analysis to alleviate the heavy time consumption and support a
wider range of operations, such as special operations provided
by third-party systems. In addition, we aim to conduct in-depth
study on the pages that fail the detection to further enhance
the EP-Detector’s practicability.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable feed back. This work was supported in
part by the Natural Science Foundation of Tianjin of China,
(Grant No. 23JCYBJC00320, 21JCZDJC00740), Science and
Technology Project of Haihe Lab of ITAI, (Grant XCHR-
20230701), the National Natural Science Foundation of China
(Grant No. 62002177, 62102197) and the Open Fund of Anhui
Province Key Laboratory of Cyberspace Security Situation
Awareness and Evaluation (Grant No. CSSAE-2023-001).

REFERENCES

[1] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”
in Proceedings of the 6th International Workshop on Automation of
Software Test, 2011, pp. 77–83.

[2] (2022, Jan.) Airtest project. [Online]. Available:
http://airtest.netease.com/

[3] (2022, Jan.) Appium-automation for apps. [Online]. Available:
https://appium.io/

[4] (2022, Jan.) Testin-web and mobile application testing. [Online].
Available: http://www.testin.net/

[5] J. Ye, K. Chen, X. Xie, L. Ma, R. Huang, Y. Chen, Y. Xue, and
J. Zhao, “An empirical study of gui widget detection for industrial
mobile games,” in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 1427–1437.

[6] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, 2013, pp. 67–77.

[7] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,
M. Allman, C. Kreibich, P. Gill et al., “Apps, trackers, privacy, and
regulators: A global study of the mobile tracking ecosystem,” in Pro-
ceedings of the 25th Annual Network and Distributed System Security
Symposium (NDSS 2018), 2018.

[8] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
android application crashes,” in Proceedings of the IEEE international
conference on software testing, verification and validation (ICST).
IEEE, 2016, pp. 33–44.

[9] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[10] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in Proceedings of the IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 269–
280.

[11] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in android apps,”
in Proceedings of the IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, 2018, pp. 408–419.

[12] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why my app
crashes understanding and benchmarking framework-specific exceptions
of android apps,” IEEE Transactions on Software Engineering, 2020.

[13] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and
Z. Su, “Fully automated functional fuzzing of android apps for detecting
non-crashing logic bugs,” Proceedings of the ACM on Programming
Languages, vol. 5, no. OOPSLA, pp. 1–31, 2021.

[14] J. Wang, Y. Jiang, T. Su, S. Li, C. Xu, J. Lu, and Z. Su, “Detecting
non-crashing functional bugs in android apps via deep-state differential
analysis,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 434–446.

[15] Y. Xiong, M. Xu, T. Su, J. Sun, J. Wang, H. Wen, G. Pu, J. He, and
Z. Su, “An empirical study of functional bugs in android apps,” in
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 1319–1331.

[16] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security
analysis of smartphone applications,” in Proceedings of the third ACM
conference on Data and application security and privacy, 2013, pp.
209–220.

[17] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting run-
time values in android applications that feature anti-analysis techniques.”
in NDSS, 2016.

[18] “Android 10 review,” retrived at 21 march 2024. [Online]. Avail-
able: https://www.theverge.com/2019/9/4/20848251/android-10-review-
dark-theme-focus-mode-gestures

[19] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[20] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in Proceedings of the IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 269–
280.

[21] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-
travel testing of android apps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 481–492.

[22] Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang, “Guided
bug crush: Assist manual gui testing of android apps via hint moves,”
in Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems, 2022, pp. 1–14.

[23] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
generating high-quality test inputs for android apps via use case
combinations,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 469–480.

[24] “View,” retrived at 21 march 2024. [Online]. Available:
https://developer.android.com/reference/android/view/View

[25] “Widget,” retrived at 21 march 2024. [Online]. Avail-
able: https://developer.android.com/reference/android/widget/package-
summary

[26] “Guesture detector,” retrived at 21 march 2024.
[27] “Motion event,” retrived at 21 march 2024. [Online]. Available:

https://developer.android.com/reference/android/view/MotionEvent?hl=en
[28] “Prototypr.io,” retrived at 21 march 2024. [Online]. Available:

https://blog.prototypr.io/8-rules-for-perfect-button-design-185d1202ee9c
[29] “Ux planet,” retrived at 21 march 2024. [Online]. Available:

https://uxplanet.org/7-rules-for-mobile-ui-button-design-e9cf2ea54556
[30] “Make apps more accessible,” retrived

at 21 march 2024. [Online]. Available:
https://developer.android.com/guide/topics/ui/accessibility/apps

[31] J. M. Carroll, “Human-computer interaction: psychology as a science of
design,” Annual review of psychology, vol. 48, no. 1, pp. 61–83, 1997.

[32] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
generating high-quality test inputs for android apps via use case
combinations,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 469–480.

[33] Google, “Accessibility scanner,” Android Developers Official
Documentation, 2024, retrieved January 4, 2024, from
https://developer.android.google.cn/codelabs/starting-android-
accessibility?hl=en0.

[34] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale,” in Proceedings of the 24th {USENIX}
Security Symposium ({USENIX} Security 15), 2015, pp. 659–674.

[35] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control flow
transitions through the android framework.” in NDSS, 2015.

[36] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
automatic reconstruction of android malware behaviors.” in Ndss, 2015.

[37] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 224–234.

[38] K. Moran, C. Watson, J. Hoskins, G. Purnell, and D. Poshyvanyk,
“Detecting and summarizing gui changes in evolving mobile apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 543–553.

[39] Google. (2022, Jan.) Ui/application exerciser monkey. [Online].
Available: https://developer.android.com/studio/test/monkey.html

[40] ——. (2022, jan) Monkeyrunner. [Online]. Available:
https://developer.android.google.cn/studio/test/monkeyrunner

[41] (2022, Jan.) Maxim. [Online]. Available:
https://github.com/zhangzhao4444/Maxim

[42] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for
android against real-world bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 119–130.

[43] J. Yan, S. Zhang, Y. Liu, X. Deng, J. Yan, and J. Zhang, “A compre-
hensive evaluation of android icc resolution techniques,” Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2021.

[44] S. Wang, Y. Wang, X. Zhan, Y. Wang, Y. Liu, X. Luo, and S. C. Cheung,
“Aper: Evolution-aware runtime permission misuse detection for android
apps,” Proceedings of the IEEE/ACM 44th International Conference on
Software Engineering (ICSE), pp. 125–137, 2022.

[45] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie,
“An empirical study of android test generation tools in industrial cases,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 738–748.

[46] J. Sun, T. Su, J. Li, Z. Dong, G. Pu, T. Xie, and Z. Su, “Understanding
and finding system setting-related defects in android apps,” in Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2021, pp. 204–215.

[47] J. Sun, T. Su, K. Liu, C. Peng, Z. Zhang, G. Pu, T. Xie, and Z. Su,
“Characterizing and finding system setting-related defects in android
apps,” IEEE Transactions on Software Engineering, 2023.

[48] C. Zhang, Y. Li, H. Chen, X.-F. Luo, M. Li, A.-Q. Nguyen, and Y. Liu,
“Biff: Practical binary fuzzing framework for programs of iot and mobile
devices,” 2021, pp. 1161–1165.

[49] A. S. Alotaibi, P. T. Chiou, and W. G. J. Halfond, “Automated repair
of size-based inaccessibility issues in mobile applications,” 2021, pp.
730–742.

[50] Y.-D. Lin, E. T.-H. Chu, S.-C. Yu, and Y.-C. Lai, “Improving the accu-
racy of automated gui testing for embedded systems,” IEEE software,
vol. 31, no. 1, pp. 39–45, 2013.

[51] Y.-D. Lin, J. F. Rojas, E. T.-H. Chu, and Y.-C. Lai, “On the accuracy,
efficiency, and reusability of automated test oracles for android devices,”
IEEE Transactions on Software Engineering, vol. 40, no. 10, pp. 957–
970, 2014.

[52] M. Pan, T. Xu, Y. Pei, Z. Li, T. Zhang, and X. Li, “Gui-guided test script
repair for mobile apps,” IEEE Transactions on Software Engineering,
2020.

[53] T. Xu, M. Pan, Y. Pei, G. Li, X. Zeng, T. Zhang, Y. Deng, and
X. Li, “Guider: Gui structure and vision co-guided test script repair for

android apps,” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2021, pp. 191–203.

[54] R. Coppola, L. Ardito, M. Torchiano, and E. Alégroth, “Translation from
layout-based to visual android test scripts: An empirical evaluation,”
Journal of Systems and Software, vol. 171, p. 110845, 2021.

[55] Y. Su, C.-Y. Chen, J. Wang, Z. Liu, D. Wang, S. Li, and Q. Wang, “The
metamorphosis: Automatic detection of scaling issues for mobile apps,”
2022.

