JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

DeepSuite: A Test Suite Optimizer for
Autonomous Vehicles

Sihan Xu, Zhiyu Wang, Lingling Fan, Xiangrui Cai, Hua Ji, Siau-Cheng Khoo, and Brij B. Gupta

Abstract—Deep learning (DL) brings autonomous vehicles
(AVs) close to reality. However, the witness of many safety issues
has raised a big concern about the reliability of AVs. To solve
this problem, much research has been done to test deep learning-
driven AVs. Generally, once a test input is produced, a developer
needs to manually check its expected output. However, there often
exists massive unlabeled test data (e.g., raw context traces in the
real world). It is impractical to manually label all test inputs.
Despite some works on automatic generation of test oracles, they
are either task-specific or constrained to synthetic inputs. In this
paper, we present a general and extensible framework, DeepSuite,
to mitigate the manual effort of generating test oracles. The
intuition behind is that not all test inputs are equally worth
labelling. With limited testing budget, it is desirable to label
a test suite with high diversity and a reasonable size. Due
to the large search space, to optimize such test suites is of
great challenge. To address it, DeepSuite employs a three-phase
optimization method (i.e., selection, crossover, and mutation) to
iteratively select representative but non-redundant test suites.
Such conflicting profit/cost objectives are attained through a
genetic algorithm with a well-defined multi-objective fitness
function. In the experiments, we first show that the diversity of
tests can be revealed by test criteria. Then, experiments on three
widely-used datasets demonstrated the effectiveness of DeepSuite
in generating test suites with competitive testing coverage and
68.42% smaller size, which greatly improves the data collection
efficiency of testing DL-driven autonomous vehicles.

Index Terms—autonomous vehicles, data collection, deep learn-
ing testing, genetic algorithm, test suite optimization

I. INTRODUCTION

UTONOMOUS vehicles have experienced spectacular

progress in recent years, and are expected to improve
road safety and benefit economics. Among technological ad-
vancements, deep learning (DL) methods exhibit great power
and bring autonomous vehicles close to reality [[1]-[6]. Despite
the progress, erroneous behaviors often occur in DL-driven
autonomous vehicles, which could lead to undesirable conse-
quences. For instance, after colliding with a tow truck, a Tesla
vehicle burst into ﬂamesﬂ The witness of such safety issues
has raised a big concern about the reliability of DL-driven au-
tonomous vehicles. To gain trust from users, it is important to
perform systematic testing of DL-driven autonomous vehicles
(AVs) before deployment.

S. Xu, L. Fan, Z. Wang, X. Cai, and H. Ji are with TKLNDST, College of
Cyber Science, Nankai University, Tianjin 300350, China.

S. Khoo is with School of Computing, National University of Singapore,
Singapore.

B. B. Gupta is with National Institute of Technology Kurukshetra, Kuruk-
shetra, India & Asia University, Taichung, Taiwan

Corresponding authors: Lingling Fan and Brij B. Gupta.

Ihttps://www.reuters.com/article/us-tesla-russia-fire-idUSKCN1V10BB

The quality of test suites is critical to obtain accurate
assessments of the reliability of DL-driven AVs. Generally,
once a test input is produced, a developer needs to manually
specify or check its expected output. Nevertheless, there often
exists massive unlabeled data in the real world, e.g., raw
context traces. To test all possible inputs needs huge labeling
efforts. Despite some works on automatic generation of test
oracles, they are either task-specific [[7] or constrained to
synthetic inputs [8]-[10]. With limited testing budget, it is
desirable to obtain a representative and efficient test suite, so
that testers can label and test them first.

In this paper, we present a general and extensible frame-
work, DeepSuite, to optimize test suites with small sizes while
maintaining high testing adequacy. The basic intuition is that
not all test inputs are equally important and valuable. Some
test inputs can be redundant and replaced by others. Fig. [I]
depicts three test inputs for deep neural networks. It can be
seen that compared with t3, to executes similar functionality
to t1. Given a budget of labeling two test inputs, test suite
Ty = {t1,t3} exhibits more different behaviors of the model
and thus more valuable than test suite 7o = {t1,t2}.

Test Case t;

Test Case t,

Test Case t3

Fig. 1: Test Cases with Different Behaviors

Based on this idea, we propose DeepSuite to generate a test
suite that is representative but not-redundant from a pool of
unlabeled tests. As the search space is usually very large, to
produce such a test suite is a challenging optimization prob-
lem. Central to our proposal is the Genetic Algorithm [11].
Starting with an initial population, DeepSuite evolves the
whole test suite towards three objectives, i.e., maximizing
a predefined test criterion, minimizing the test suite size,
and minimizing the distance to further improve coverage. We
implemented the first objective with five test coverage criteria
specialized for DL systems. The reason behind is that it is
impossible to detect a defect regarding some neuron activities
if these neurons are never activated by tests. Our experiments
first prove that well-defined test criteria are correlated with
test diversity, and thus can benefit test data selection. Based on
this observation, we conduct experiments on five popular test
criteria and eight widely-used DL-driven systems. The results

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

show that DeepSuite can generate test suites with competitive
coverage and 68.42% smaller size.
In summary, we made the following main contributions:

« We investigate and find that well-defined test criteria for
DL-driven systems are correlated to the diversity of tests,
and thus can benefit test data selection to expose hidden
behaviours of DL-driven autonomous vehicles.

o We present DeepSuite, an extensible tool to optimize test
suites with high testing adequacy but small sizes for DL-
driven autonomous vehicles. To our best knowledge, this
is the first work on test suite optimization for DL-driven
systems with multiple conflicting profit/cost objectives.

o We study the effects of different test criteria and mutation
operators on the performance of DeepSuite, and find
that with metamorphic mutation, DeepSuite is capable of
achieving higher coverage with limited extra budget.

The rest of the paper is organized as follows. In Section [II]
we discuss the research works related to this paper. Section [III]
details our three-phase optimization method (i.e., selection,
crossover, and mutation). In Section we evaluate the
performance of DeepSuite on three widely-used datasets. In
Section [V] we discuss two concerns about a genetic algorithm
like DeepSuite and the threats to validity as well. Finally,
Section [Vl draws the conclusions and describe future works.

II. RELATED WORK
A. Test Criteria for Deep Neural Networks

Similar to traditional software testing, the quality of test
data affects the efficacy of testing. Recently there have been
several studies on test criteria for deep learning systems. Pei e?
al. 8] proposed the first coverage criterion for deep learning
systems. They highlighted the importance of neuron activities
to capture the internal states of deep neural networks (DNNs).
A neuron was considered to be activated if the output value
is higher than a predefined threshold. Neuron coverage (NC)
was defined as the ratio of unique neurons activated by tests.
Ma et al. [|12] designed a set of multi-granularity test criteria
for DNNs, including neuron-level and layer-level criteria.
Specifically, they proposed k-Multisection Neuron Coverage
(KMNC), which divided the output range of each neuron into
k sections, and calculated the ratio of covered sections. They
also proposed Neuron Boundary Coverage (NBC) and Strong
Neuron Activation Coverage (SNAC), which calculated the
ratio of covered corner-case regions beyond training data. In
addition, they designed Top-k Neuron Coverage (TKNC) [12],
which computed the ratio of neurons that have once been one
of the most active neurons. Sun et al. [13] proposed to apply
traditional MC/DC coverage criterion to DNNs. Kim et al. [|14]]
proposed a test adequacy criterion named Surprise Adequacy,
which was based on the distances of model behaviors between
training and test data.

B. Input Synthesis for DL Systems

Test inputs of DL-driven systems can be categorized into
two groups, i.e., natural inputs and synthetic inputs. Many
studies investigated adversarial example generation to attack

deep learning systems [15]. To perform DL testing, Pei et
al. [8]] proposed a white-box testing technique named Deep-
Xplore, which produced inputs to trigger different behaviors
of similar DL-driven systems. It perturbed original inputs by
gradients towards adversarial examples with high test cover-
age. Sun et al. [16] proposed concolic testing on deep learning
systems. Odena et al. [[17] presented a coverage-guided fuzzing
technique that could be used to detect numerical errors and
disagreements between DNNs. Similarly, Zhang et al. [18]]
presented a black-box fuzzing technique to find misclassified
test inputs for image classifiers. Xie et al. [19] implemented
DeepHunter that leveraged coverage criteria to guide fuzzing.
They proposed a metamorphic mutation strategy to preserve
the semantics of tests, and automatically detected erroneous
behaviors. Tian et al. [[10] designed DeepTest to perform
systematic testing for DL-driven autonomous vehicles. They
exploited test coverage to explore different parts of logic,
so as to find erroneous behaviors under realistic driving
conditions. Shen et al. [20] designed an approach named
boundary sampling selection to boost mutation testing for
DL systems. Despite similar objective (i.e., reduce labelling
cost), they constructed test suites to achieve high mutation
scores, while DeepSuite takes the diversity of test inputs into
consideration. In addition, the perturbations of natural inputs
is not necessary in DeepSuite. The key idea of this paper is
to optimize a test suite with high diversity while maintaining
small test suite size.

C. Test Prioritization

Traditional Software. Many research efforts have been de-
voted to test suite optimization for traditional software. The
greedy algorithm has been one of the renowned heuristics
to optimize test suites [21]], [22]. It picked test cases that
satisfied a majority of disgruntled requirements and repeated
this process until all requirements are fulfilled. The clustering
approach was another popular technique to optimize test
suites [23]], [24]]. Researchers typically clustered similar tests
into the same group. The basic idea was that similar tests
were supposed to exhibit similar behaviors of a target system.
Moreover, meta-heuristic algorithms were also explored to
optimize test suites [25]-[27]]. Inspired by multi-objective
regression test selection for traditional software [26], this paper
first applies search-based methods on DL-driven AVs.

DL-driven Systems. Test prioritization for DL-driven systems
have been investigated by recent works. Shi et al. [28]
proposed to identify faulty tests from a statistical view of
DNNSs. Specifically, they exploited cross entropy to prioritize
tests. Byun et al. [29]] presented several strategies to find
tests likely to be faulty, including softmax output, Bayesian
uncertainty, and input surprise. Moreover, Zhang et al. [30]]
proposed to prioritize tests to generate adversarial examples.
Li et al. [31] proposed to estimate the performance of DL-
driven autonomous vehicles, so as to boost operational testing.

Note that the goal of DeepSuite is different from test priori-
tization. DeepSuite highlights the importance of test diversity,
and its goal is to optimize a representative and efficient

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

test suite. Although test diversity can be indicative to fault-
detection capabilities of test suites, the goals of DeepSuite
and test prioritization is inherently different.

D. The Oracle Problem

To exercise a test, one needs not only the test input, but also
the test oracle that depicts the expected behavior of the test to
determine whether the test successes or fails. Nevertheless, it
can hardly be assumed that the automated test oracle is always
available, especially for DL-driven autonomous vehicles with
large input space. To address this problem, one strategy was
differential testing that compared the behaviors of a test input
when executed on multiple DL systems [8]. Although this
strategy could obtain oracles automatically, the requirement
of multiple systems with similar functionalities limited its
application scope. Another strategy, metamorphic testing, was
also a promising solution to tackle the oracle problem [9],
[10], [19]. These studies first assumed that there existed a set
of inputs that have been labeled correctly. Then, they carefully
designed mutation strategies to derive large amounts of syn-
thetic inputs. By assuming such mutation could not affect the
semantics of original inputs, they applied metamorphic testing
on fuzzing and adversarial example generation. Nevertheless,
without complete formal specification, the mutants needed to
be manually checked to eliminate false positives.

In the research field of autonomous vehicles, Borkar et
al. [7] proposed to exploit time slicing to generate oracles
automatically. Although this method reduced the manual input
of ground truth, it was designed specifically for lane detection,
which restricted its application to other tasks such as object
detection and tracking [32]]. The oracle problem of original
and natural inputs still remains the bottleneck of automated
testing of DL-driven AVs. In this paper, we mitigate the oracle
problem in an alternative way. We take into consideration both
the effectiveness and efficiency of natural tests, which are two
conflicting profit/cost objectives. We implement an extensible
framework named DeepSuite and allows metamorphic muta-
tion as an optional setting.

III. APPROACH

In this section, we describe DeepSuite, a search-based test
suite optimizer for DL-driven autonomous vehicles.

A. Overview of DeepSuite

We first give an overview of the proposed test suite opti-
mizer DeepSuite. Fig. [2| depicts the overview of DeepSuite.
Given a target system and a seeding pool, the search space
of DeepSuite consists of all possible test suites that can be
generated from the seeding pool. To mitigate the huge labelling
efforts, DeepSuite optimizes a representative and efficient test
suite from the seeding pool. To achieve this goal, it employs
a search-based optimization method with multiple objectives.
It evolves the entire population iteratively to find the best
individua which is a test suite optimized for the target

2We use the terms “individual” and “candidate” interchangeably, because
in DeepSuite both an individual and a candidate represent a test suite for the
target DNN.

system. During the evolution, DeepSuite first initializes a
population with a set of individuals randomly generated from
the seeding pool. After that, DeepSuite iteratively performs
three operators, i.e., Selection, Crossover, and Mutation. The
selection operator defines a fitness function to select test suites
with high coverage but a small size into further evolution. The
crossover operator mates two adjacent candidate test suites to
increase the global search ability. The mutation operator allows
randomly adding, removing or metamorphic mutating a test
case, so as to increase the local search ability of DeepSuite.
If the fitness cannot be improved anymore or the allocated
resources are exhausted, DeepSuite stops searching and returns
the best candidate, which is the optimized test suite.

Algorithm [T] specifies the main algorithm of DeepSuite. The
input of the algorithm is a target DL-driven system A/ and a
pool P of q unlabelled test inputs. The output is an optimal test
suite 7. One straightforward way to optimize the test suite is to
determine whether a case is selected into the test suite. Without
metamorphic mutation, the optimization is a NP complete
problem and the algorithmic complexity is 29. It gets worse
when we consider metamorphic mutation of inputs. Thus, it
is impractical to optimize the test suite directly. To address
this problem, DeepSuite first constructs the initial population
Gy by randomly generating a certain number of individuals,
denoted by Gg = {T1,T3,...,T,} (Line 2). Each individual
is a test suite containing a set of test inputs randomly picked
from the pool P, ie., T; = {til,tig,...,tim}(ti]‘ S 73)
We use current_pop to denote the current population in
each iteration, and initialize it with Gy (Line 3). During
the evolution, DeepSuite evolves the entire population by
iteratively performing the selection, crossover and mutation
operations till the stop condition is satisfied (Line 4). In
the selection operation, we design a multi-objective fitness
function (obj; for coverage, obj, for test suite size, and
objs for the distance to improve coverage) to measure the
effectiveness and efficiency of each individual ind (Lines 5-
9). Test suites with higher coverage, smaller sizes, and higher
probabilities to improve coverage are assigned higher scores
and thus chosen for the next generation denoted by next_pop
(Line 10). To increase the search abilities, DeepSuite takes
selected individuals as the parents to produce offsprings (Line
12) and performs the mutation operation on these offsprings
(Line 13). Specifically, in the crossover operation, DeepSuite
randomly exchanges a subset of test cases in two adjacent
parents (test suites) to produce their offsprings; in the mutation
operation, it conducts a two-stage strategy to mutate offsprings
at the test-suite and test-case level respectively. At the end of
each iteration, offsprings that achieve higher test coverage than
parents or the same coverage with smaller sizes are added
into the new generation for further evolution (Lines 14-17).
DeepSuite evolves the entire population till the stop criterion
is satisfied and the best individual is selected as the output of
the algorithm (Line 18).

B. Fitness Function

The goal of DeepSuite is to optimize a test suite with
high coverage but a small size from a test pool. However,

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1 . [1 . |
! Selection bl Crossover i Mutation !
: b P '
1 !
: ‘ -~ H f—— H —— ‘ ‘ f— ‘ ‘ — ‘ P Test Suite Crossover V| tmage Text Video Audio |1
' Vo i i H || Mutation Mutation || Mutation Mutation ||}
1 ! 1] 1 1
' Colle [s |u ti | tio [| ta |1 i | Test
| L Bi2 i2 i3 i4 i1 i2 [bs | Ge ||ty oo N
: ... | ESMC (g e Test Case Level ' | Suite
: . . o T, T b :
' Obj1: Extensible Coverage Criteria b [[[15 L o Random Test Random Test I
Initial ' P d 2z EL L L 1 J2 B z E ' Case Addition Case Deletion i Best
Population ! ‘Oij: Test Suite Slze| Obj3: Distance ‘: ! [Test Suite Level ! Individual
{T1, T2 ... Ta} | e ——————— - .

Next Generation
Fig. 2: The Framework of DeepSuite with Extensible Selection, Crossover, and Mutation Operators

Algorithm 1: Search-Based Test Suite Generation

Input: A target DL-driven system N, a set of test inputs P,
the size of a population L
Output: An optimal test suite 7'
1 begin

2 Gy < initPopulation(P, L) ;

3 current_pop < Gy ;

4 while not reached the stopping criterion do

5 for ind € current_pop do

6 obj1 < Cov(N,ind);

7 obja < Len(ind);

8 objs < Dis(ind);

9 ind.fitness < (obj1, obja, 0bjs);

10 next_pop, best_ind <+ Select(current_pop, L);

1 next_pop <+ next_pop U {best_ind};

12 offsprings < Crossover(next_pop);

13 offsprings < Mutate(offsprings);

14 for ind € offsprings do

15 if Cov(N,ind) >
Cov(N, best_ind) V Cov(N,ind) =
Cov(N, best_ind) A Len(ind) <
Len(best_ind) then

16 | next_pop < next_pop U {ind};

17 current_pop <— next_pop;

18 T <+ selectBest(current_pop);

19 return 7'

the search space is usually very large, which is the main
challenge of this work. To address this problem, we design a
multi-objective fitness function that guides evolution towards
the global optimal solution. Specifically, given a feedforward
DNN A and a pool of tests P, we design a fitness function
to select test suites that have high test coverage, small sizes,
and are likely to improve coverage into further evolution (i.e.,
with the minimum distance to the activation of new neurons).

Maximizing Testing Adequacy. The first objective is to
maximize testing adequacy of test suites. Given a target
system, an optimal solution of DeepSuite is a test suite that
explores different behaviors of the system. To explore various
behaviors of a given DNN, we adopt test coverage criteria to
measure testing adequacy of test suites [8], [12]]. The reason
behind is that erroneous behaviors w.xt. a certain neuron can
not be exposed unless the neuron is activated. For example, k-
multisection neuron coverage (KMNC) is defined as the ratio
of sections that have once been covered. Given a neuron n,
we first divide the range of values of neuron n in the training
set into k sections. Then, the set of values in the i-th section
is denoted by V;". If w(t,n) € V;", the i-th section of neuron
n is covered by the test case ¢. Formally, given a test suite 7',

KMNC can be computed by the following equation:
2onen {Vi"Bt € T2 w(t,n) € Vi}|

k x |N]| ’
where |N| denotes the number of neurons in the target system
and k denotes the number of sections in a neuron. Note that

DeepSuite is an extensible framework that can be combined
with any effective test criteria for DL-driven systems.

COUKMNC (T7 k) =

Minimizing Labeling Effort. The second objective is to
minimize labeling effort of test suites. Since automated test
oracle is not always available, especially for high-dimensional
inputs, it is essential to optimize a representative test suite
whose size is not too large. DeepSuite achieves this goal
by controlling the size of test suites and defraying the cost
associated with labeling.

Minimizing the Distance to Improve Coverage. The third
objective is to improve test coverage as soon as possible. If
multiple candidates (test suites) have the same coverage and
sizes, DeepSuite computes the nearest distance of each test
suite to improve coverage. Specifically, given a test suite, it
first records neurons that have not been activated by the test
suite. For each inactivated neuron, it finds a test case where the
value of this neuron is the closest to the activation threshold,
and then computes its distance to activate the neuron. The
function Dis(ind) in Algorithm [I| computes the average
distance of a test suite to improve test coverage.

Finally, given a test suite 7', the fitness of 1" can be denoted
by a tuple, i.e., fitness(T) = (Cov(T),|T|, Dis(T)), where
Cov(T) represents the test coverage of T on a predefined test
coverage criteria, |T'| denotes the number of test cases in the
test suite, and Dis(T) denotes the average distance of test
cases to improve test coverage.

C. Selection Strategy

After initializing a population, DeepSuite iteratively selects
a set of individuals from the current population into the next
generation. Algorithm [2] shows the selection algorithm. We
first compute the fitness scores for all individuals in the
current population p (Lines 2-7). Then, we iteratively select k
individuals from p according to their fitness scores (Lines 9-
16). In each iteration, we randomly select k. individuals from
the current population (Line 10). Only the best individual is
selected into the next generation. We repeat the selection k
times and obtain k individuals into further evolution. We note
that there are three objectives in DeepSuite, which are not
equally important. First, high testing adequacy is the most

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 2: The Selection Algorithm

Input: The current population p, the number of selected
individuals &, the number of competitors k.
Output: A population composed of individuals selected for

the next generation ppeqt

1 begin

2 for ind € p do

3 obj1 < Cov(ind);

4 obja + Len(ind);

5 objs < Dis(ind);

6 ind.fitness < (obj1, obja, 0bjs);

7 /*A fitness is a tuple.*/

8 pnea)t — @,

9 for i =1 to k do

10 competitors + RandomSelect(p, kc);

11 sorted_list < SortByDistance(competitors);
12 sorted_list < SortBySize(sorted_list);

13 sorted_list < SortByCoverage(sorted_list);
14 /*The highest priority is coverage.*/

15 best_ind + sorted_list[0];

16 Prext < Pneat U {best_ind};

17 return ppeqt;

important objective, so that DeepSuite first selects test suites
with higher test coverage than others. Second, if multiple test
suites have the same test coverage, those with smaller sizes are
prioritized by DeepSuite. The reason behind is that test suites
with smaller sizes have fewer redundant test cases than those
with the same coverage but larger sizes. Last, if both the testing
adequacy and test suite size are the same, DeepSuite prioritizes
test suites close to the threshold of coverage improvement.

To achieve the aforementioned goal, we sort the candidate
list three times with three indicators. Specifically, we first sort
the test suites in the ascending order of their distances to
improve test coverage (Line 11). Then, we sort the sorted list
in the ascending order of test suite sizes (Line 12). Finally, we
sort the sorted list again in the descending order of the testing
adequacy (Line 13). By this means, test suites with the highest
testing adequacy are selected with the highest priority. When
multiple test suites have the same testing adequacy, those with
smaller sizes are considered have fewer redundant tests, and
thus are prioritized. Finally, only if multiple test suites have the
same testing adequacy and test suite size, those with smaller
distance to improve test adequacy are selected. After sorting,
the best individual is the first one in the sorted list (Line 15).
We repeat such competition for k£ times, and finally select &
individuals for further evolution (Lines 9-16). We note that
DeepSuite is an extensible framework that can be combined
with other selection operators that are suitable for such a multi-
objective optimization problem.

D. Crossover

To enhance the global searching ability, two parent test
suites in the current population are mated to produce two off-
springs. As illustrated in Fig. 2] we adopt one-point crossover
to produce offsprings. Specifically, given two parent test suites
Ty and T, we randomly select a crossover point, which is a
value between 0 and 1. We use it to denote the ratio 6 of the
number of test cases that will be swapped. Then we keep the
heads of two parent test suites and swap their tails to generate

two offsprings. For the reason that each individual is composed
of a set of independent test cases, it can be ensured that each
offspring is a valid test suite that can be used for testing. In
this way, DeepSuite is able to pass on useful test cases in the
parents to their offsprings.

E. Mutation

To increase the ability to search for optimal solutions, we
provide two types of mutation operations, i.e., test-suite level
and test-case level mutation. At the test-suite level, DeepSuite
randomly adds or deletes test cases; at the test-case level, it
mutates existing test cases to expose more system behaviors.

1) Test-Suite Level: Given a test suite as an individual,
mutation at the test-suite level randomly adds or deletes test
cases to change test suite sizes. For each individual, DeepSuite
adds a test case randomly selected from the test pool with
probability €. According to the selection strategy, if the test
case improve coverage, the individual might be selected into
further evolution. Otherwise, the test suite might become ob-
solete since small-sized test suites with the same coverage are
prioritized to filter out redundant cases. Similarly, DeepSuite
removes a test case from each individual with probability 7.
When randomly deleting a test case, if it affects test coverage,
the test suite might be ignored. Otherwise, if the test coverage
remains the same when a test case is removed, the test suite
might be selected into the next generation. In this way, the
SIZE of test suites changes during the evolution. Combining
the selection and mutation operation, DeepSuite can reduce
the overlap in coverage of different test cases. Generally, it
adds a test case only when it improves the entire coverage of
the test suite. It removes a test case from a test suite if it has
no contributions to test coverage.

2) Test-Case Level: To further increase the local search
capability, DeepSuite also allows mutations at the test-case
level. Specifically, with probability &, it randomly mutates a
test case for each individual. When a test case is mutated, we
apply domain-specific transformation on it.

Input Transformation. In the following, we use an image
as an example input in autonomous vehicles to describe
the test-case level mutation. Given an image as a test case,
DeepSuite randomly applies image transformation to uncover
different behaviors. Specifically, we employ two groups of
image transformations: affine transformation and pixel trans-
formation [|19]]. Affine transformation moves pixels by scaling,
shearing, rotation, and translation of original inputs. Pixel
transformation changes the values of pixels by means of
brightness, contrast, Gaussian noise, and image blurring. The
image transformations are designed to find neighbors of origi-
nal images with similar semantics but different system behav-
iors, which enhance the local search capability of DeepSuite.

Domain-Specific Constraints. In order to ensure semantic
similarity of synthetic tests, we apply domain-specific con-
straints to limit the changes of images. Specifically, con-
servative parameters are set for image transformations. For
example, the amplitude of a rotation is set to less than 15
degrees. For each original image, affine transformation is
permitted at most once, and the number of changed pixels is

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

constrained to less than 2 percent of the number of pixels. The
image transformation and domain-specific constraints have
been proved effective in previous works [|19].

We note that DeepSuite is an extensible framework that
can be applied for general feed-forward DNNs. Mutation at
the test-case level can be configured with domain-specific
transformations and constraints developed from other research
fields. We also note that test-case mutation is optional and
extensible. Users can determine whether synthetic tests are
permitted in optimized test suites.

FE. Stop Condition

The stop condition of DeepSuite can be set according to
the allocated resources. As a search-based method, DeepSuite
can evolve towards an optimal solution for an arbitrary length
of time, and can be stopped at any time when the allocated
resources are exhausted. Theoretically, if running for enough
time, DeepSuite can converge to an optimal solution, since
it always maintains the best solution at each iteration (Line
10 in Algorithm [I). Detailed analysis of convergence can be
seen in [33]]. In this paper, if the entire population can not
evolve for certain generations, we stop searching. To mitigate
the problem of local optimal, we run each experiment 30 times
with different initialization.

IV. EVALUATION

Since DeepSuite employs test coverage criteria specialized
for DNNs as the guidance of test suite optimization, in this
paper, we first investigate the usefulness of five test criteria
(i.e., NC, TKNC, KMNC, SNAC, and NBC) in terms of
measuring test diversity. Then, we evaluate the performance
of DeepSuite in generating small-sized test suites with high
test coverage. We perform evaluation on a self-driving dataset
and two image datasets. Specifically, we address the following
research questions:

RQ1: For test selection in DeepSuite, are recently proposed
test criteria useful to indicate the diversity of test cases?

RQ2: How do hyper-parameters of test criteria affect their
effectiveness?

RQ3: Can DeepSuite generate small-sized test suites with
high testing adequacy?

RQ4: How about the influence of the test-case level muta-
tion on optimized test suites?

A. Dataset

Table [[] details the datasets and subject models used in this
paper. We select three popular and publicly available datasets
as the evaluation subject datasets (MNISTf|and CIFAR-1(f"|are
two image datasets, and Udacity comes from a self-driving
challengeﬂ}. MNIST consists of 60,000 training inputs and
10,000 testing inputs. Each input is a gray-scale image of
hand-written digits. CIFAR-10 is a dataset of general color
images with 50,000 training inputs and 10,000 testing inputs.

3http://yann.lecun.com/exdb/mnist/
“https://www.cs.toronto.edu/ kriz/cifarhtml
Shttps://github.com/udacity/self-driving-car/tree/master/challenges

TABLE I: Datasets and DNN Models

Dataset Description DNN Model #Neurons Accuracy
LeNet-1 52 98.3%
MNIST Hand-written Digits LeNet-4 148 98.3%
LeNet-5 268 99.1%
VGG-16 2,122 97.4%
CIFAR-10 Color Images ResNet-20 2570 91.3%
Dave-orig 1,560 99.9%%*
Udacity Self-driving Video Dave-norm 1,560 99.9%*
Dave-drop 1,444 99.9%%*

*We report 1-MSE (Mean Squared Error) as the accuracy for the Dave
models, because prediction of the steering wheel angle based on the Udacity
dataset is a regression task.

The Udacity challenge dataset in Table |I| is a self-driving
car dataset that consists of 101,396 training inputs and 5,614
testing inputs, each of which is a video frame captured by
a camera accompanied with steering wheel angle. We study
several DNN models for each dataset following previous
studies [8[], [17], [19]. Specifically, for MNIST, we train three
DNN models from the LeNet family and achieve competitive
test accuracy (i.e., over 98%) to further conduct a fair compar-
ison. For CIFAR-10, we explore two pre-trained DNN models
(i.e., VGG-16 and ResNet-20), which are relatively large-scale
models. For the Udacity challenge dataset, like previous works
(i.e., DeepXplore [8] and Deeplmportance [34]]), we study
three pre-trained self-driving models from Nvidia, so as to
evaluate the performance of DeepSuite on test data selection
of autonomous vehicles.

B. Effectiveness of Test Coverage Criteria (RQI & RQ2)

1) RQI: To provide answers to RQI, we investigate
whether test cases with different functionalities result in dif-
ferent DNN coverage profiles. Since DNN models have no
explicit modules of functionalities, test cases belonging to
different classes (i.e., with different labels) are considered
to exhibit different DL behaviors. However, the prediction
of steering wheel angle is a regression task, which results
in a continuous value instead of a class label. For this
reason, in RQ1&2, we only use five classifiers (i.e., LeNet-1,
LeNet-4, LeNet-5, ResNet-20, and VGG-16) to investigate the
relationships between diversity and test coverage criteria. Nev-
ertheless, these feed-forward supervised models are inherently
the same in terms of representations learning.

For test cases in the same class (i.e., with the same label),
we randomly picked 1,000 pairs of test cases within each
class, and obtained 10,000 pairs of such test cases from 10
classes. We use C' to represent the set of labels in the dataset,
and use S5 to denote the set that contains such pairs of test
cases, i.e., S; = {(ti,t;)|y(t:;) = y(tj),y(-) € C} where
y(-) represents the label of the test case. We also randomly
picked 10,000 pairs of test cases from different classes to
compute the average distance for each criterion. We use Sy
to denote the set that contains such pairs of test cases, i.e.,
Sa = {(t:, t;)|y(t:) # y(t;),y(-) € C}. The dissimilarities of
test cases are measured by Jaccard distance as follows:

lg(ti) N g(t))]

6i7' =1-)
! lg(t:) U g(t;)]

(1)

JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE II: Average Jaccard Distances between Test Coverage Profiles

Model | Type NC05 NC075 TK1 TK2 TK3 KM10 KMS50 KM 100 KM_200 KM_500 KM_1000 KM_10000

LeNet-1 D, 0.379 0.146 0.233 0.452 0.382 0.719 0.865 0.883 0.893 0.901 0.906 0.921
Dy 0.982 0.853 0.704 0.701 0.592 0.819 0.900 0.910 0.916 0.921 0.924 0.935

LeNet-4 D, 0.526 0.541 0.456 0.445 0.520 0.691 0.832 0.850 0.857 0.863 0.866 0.870
Dy 0.855 0.948 0816 0.760 0.662 0.800 0.882 0.893 0.898 0.901 0.902 0.905

LeNet-5 D, 0.566 0.595 0.406 0.534 0.525 0.630 0.776 0.795 0.804 0.809 0.812 0.815
Dy 0.907 0.965 0.774 0.786 0.752 0.756 0.846 0.857 0.862 0.865 0.867 0.869

ResNet-20 D, 0.515 0.756 0.720 0.658 0.611 0.810 0.962 0.980 0.988 0.994 0.996 0.997
Dy 0.551 0.926 0.786 0.726 0.680 0.845 0.969 0.983 0.990 0.995 0.996 0.998

VGG-16 Dy 0.653 0.737 0.767 0.755 0.738 0.615 0.806 0.836 0.852 0.863 0.867 0.870
Dy 0.871 0.909 0.852 0.841 0.832 0.654 0.827 0.853 0.867 0.877 0.880 0.883

Dg: average distances between test cases from the same class; Dg: average distances between test cases from different classes; TK: TKNC; KM: KMNC

where ¢; and ¢; are two test cases randomly selected from
the test suite, g(-) the function that executes a test case
on a target model and obtains a type of coverage profile.
We conduct experiments on eight DNN models and five test
criteria. However, we observed that for SNAC and NBC, the
values in their coverage profiles were almost zeros, which
caused their Jaccard distances to be NaNs in most cases. The
reason behind is that SNAC and NBC are test criteria for
boundary testing (i.e., they only record rare cases beyond the
training dataset), For this reason, we only display and analyze
the results on NC, TKNC, and KMNC.

For NC, the threshold of neuron activation is set to 0.5
and 0.75. For TKNC, the parameter k is set to 1, 2, and
3. For KMNC, although the parameter k (i.e., the number
of value sections) is only set to 1,000 and 10,000 when
proposed in [[12], we observed that it is difficult to capture the
similarities between test cases when the test criterion is too
fine-grained. For this reason, we enrich the parameter settings
and set k to 10, 50, 100, 200, 500, 1,000, and 10,000.

Result. Table [l shows the average Jaccard distances between
the coverage profiles of test cases. We use Dy and Dy to
denote average distances between test cases from the same and
different classes, respectively. In Table[ll] a small value implies
that test cases are similar to each other in terms of their test
coverage profiles. To distinguish between values w.r.t different
types, distances between test cases from different classes are in
bold. Overall, it can be seen that given a target DNN model and
a test coverage criterion, the average Jaccard distances between
test cases from the same classes are smaller than those between
test cases from different classes. According to Equation [T}
these results show that test cases within the same class have
similar coverage profiles compared to test cases from different
classes, which indicates that DNN coverage altogether varies
for test cases with different functionalities, and thus can be
used to measure the diversity of test cases.

Answer to RQ1: Well-defined criteria, such as NC, TKNC,
and KMNC, are correlated to the diversity of test cases, and
thus can benefit test data selection for DL-driven systems.

2) RQ2: To answer RQ2, we further investigate the influ-
ence of parameters on the usefulness of test criteria to measure
test diversity. To illustrate the affects of hyper-parameters, we
use A to denote the gap between the average Jaccard distances
of test cases from the same and different classes. Specifically,

0.35
0.30
0.25
0.20
Avg(A)
0.15

0.101

0.05

0.00

RO S S S SRS
RO SR @? S &
© Y 8T e e &

Fig. 3: Averaged A for Test Criteria with Different Parameters

R D S S
&8 AN RN

we compute A as follows:

1
DL g

(titj)ESa

A= |s%| S o6 ©
(tist;)€ESs

where S, contains pairs of test cases with the same labels,
Sq contains pairs of test cases with different labels, and J; ;
denotes the Jaccard distance between test cases t; and %;.
According to Equation [T and 2} a larger A indicates that
test cases with the same label tend to have similar coverage
profiles, compared to those with different labels. If A is larger,
we expect that the corresponding criterion is more useful to

distinguish test cases with different functionalities.

Result. Fig. 3] displays the average A for each test criterion on
five DNN models. Generally, it can be observed that NC and
TKNC have larger Avg(A) than KMNC, which indicates that
they are more effective than KMNC in measuring the diversity
of test cases in terms of their classes. For NC, it can be seen
that Avg(A) increases when the threshold of activation is set
to 0.75 rather than 0.5. It indicates that NC is more useful as
an indicator of the input-output diversity when the threshold
is set to 0.75. For TKNC, where the Top-k activated neurons
in each layer are recorded, the parameter k is set to 1, 2, and 3
when the criterion was presented in [[12]]. From Fig. EL it can be
observed that when £ is set to 1, the gap between Dy and Dy is
larger compared with the other two settings. For KMNC, it can
be observed that when k increases, Avg(A) becomes smaller;
when £ is set to 1,000 and 10,000 as originally proposed
in [12f], there is little differences between test cases with the
same and different classes. A possible explanation could be
that when £ is too large, the value range of a neuron is divided
into too many sections. In this case, the criterion is too fine-
grained to distinguish test cases with different behaviors.

Answer to RQ2: The parameters of test criteria specialized
for DNNs play an important role in their effectiveness to
measure the input-output diversity of test cases.

JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE III: Coverage% (Size) of Test Suites Optimized by Methods
without Mutation at Test-Case Level

TABLE IV: Coverage% (Size) of Test Suites Optimized by Methods
with Mutation at Test-Case Level

Model MTD| NC KMNC NBC SNAC TKNC Model MTD| NC KMNC NBC SNAC TKNC
CL |288(19) 785(198) 19(12) 19(10) 682 (20) BS |38.5(104) 67.1(104) 3.8 (104) 1.9 (104) 88.5 (104)
LeNet-1 |GE [385(12) 983(163) 115(12) 7.7 4) 88.5 (13) LeNet-1 |[GA [385(11) 98.5(103) 385(34) 23.1(28) 88.5(9)
DS~ |385(6) 983 (131) 115(11) 77 (4) 885 (6) DS |385(6) 98.5(98) 38.6(29) 23.1(20) 88.5(6)
CL |574(28) 682(165) 3425 42(16) 728 (55) BS | 629 (157) 642 (157) L7(157) 0.0 (157) 46.6 (157)
LeNet-4 GE |[622(25) 89.1(183) 5.1(29) 7411 83.1(47) LeNet-4 GA | 622 (35 91.5(189) 35.1 (104) 14.2 (21) 83.8 (95)
DS~ | 622 (19) 89.1 (147) 51 (20) 7.4 (11) 831 (38) DS [628 (19) 929 (142) 40.5 (85 153 (20) 86.5 (36)
CL |54.1(59) 774 436) 182 (54) 12.6 (44) 65.3 (58) BS |52.1(273) 749 (273) 10.1 (273) 5.4 (273) 47.8 (273)
LeNet-5 |GE |[73.9(55) 83.6(412) 228(54) 14.6 (43) 76.1 (58) LeNet-5 |GA |[74.6 (74) 83.7(290) 243 (263) 40.7 (61) 77.9 (97)
DS~ | 70.5 (48) 83.6 (365) 22.8 (50) 14.6 (36) 76.1 (55) DS |76.5 (51) 84.7(235) 243 (49) 399 48) 772 (54)
CL 53 (157) 71.4(1,564) 9.5 (260) 10.7 (184) 52.9 (578) BS 9.6 (562) 35.1(562) 12.5 (562) 13.8 (562) 62.6 (562)
ResNet-20 | GE | 9.6 (132) 90.2(1,438) 13.4 (245) 14.3 (157) 62.6 (521) ResNet-20 | GA ii-o(li(’) 90-3<i,?10> 33-5(12‘;3) 74.7 (447) 63-6 (3ﬂ>
DS~ | 9.6 (98) 88.0(1211) 127 (227) 13.0 (129) 62.6 (408) DS 0 049 90.9(,136) 49.9 (931) 72.3 (370) 626 311)
BS | 167 (524) 84.6(524) 113 (524) 11.9 (524) 46.7 (524)
CL |129(97) 792(847) 13(275) 5.7 (178) 38.8 (478)
VGG-16 |GE |167(68) 884 (737) 9.1 (242) 154 (163) 46.7 (427) VGG-16 SSA ig'i E}Q? §§Z Eéﬁii 22;8’222; gg'g Egig; :2'; giii
DS~ |16.7 (56) 87.9 (589) 9.1 (192) 15.5 (157) 46.7 (396) : : =i - -
CL | 362 (623) 527 (1925 0.1(3) 037 512 (843) | BS |353(74) 362474 0.1 (474) 0.1 (474) 49.8 (474)
. Dave-orig | GA | 652 (437) 67.5 (1,846) 47.9(1,495) 1.9 30) 53.3 (819)
Dave-orig | GE |60.5 (453) 63.1(1,832) 0.5(14) 1.0 (18) 55.1 (754) DS |655 @12 712 (713 479112 19 (22) 582 (196)
DS~ | 60.5 (436) 63.1 (1,739) 0.5 (14) 1.0 (15) 53.9 (691) : oz (U 9, . .
L (150 e 1900 4105 1900 b |5 |10 R0 S B S
Dave-norm | GE |13.8 (133) 743 2,221) 4.1 (129) 7.6 (151) 8.9 (83) ave-norm : D & <2 LASE :
_ - DS |16.1 (106) 832 (2,052) 56.1(1,352) 22.5 (247) 42.8 (472)
DS~ | 13.6 (122) 74.0 2,215) 3.9 (119) 7.8 (114) 8.9 (83)
BS |68.7(485) 252 (485) 6.7 (485) 6.7 (485) 22.1 (485)
CL 1366 (352) 469 (1,440) 43 (69) 43 (69) 268 (495) pave.dropout | GA |78.2 (273) 743 (1,536) 54.4(1,463) 157 (111) 39.4 (560)
Dave-dropout | GE | 68.7 (291) 632 (1,297) 6.7 (64) 6.3 (59) 67.7 (397) DS | 794 (267) 815 (1472) S54.4(1315) 174 (113) 72.5 (339)
DS~ | 68.7 (281) 63.5 (1,119) 6.5 (49) 6.6 (53) 67.7 (356)

MTD: Method; CL: The Clustering Algorithm; GE: The Greedy Algorithm;
DS™: DeepSuite without Metamorphic Mutation.

C. Performance of DeepSuite (RQ3)

From RQI1&RQ?2, it can be observed that test coverage
altogether varies for test cases with different functionalities,
and thus can approximate the diversity of test cases. Based
on this observation, to provide answers to RQ3, we conduct
experiments on these five test criteria and eight DNN models
as related works [8], [19]. We evaluate the performance of
DeepSuite from two aspects: test adequacy and test suite size.
Typically, our evaluation should compare the performance
of DeepSuite with existing related works. However, to the
best of our knowledge, this is the first study to achieve
high test coverage with small-sized test suites for DL-driven
systems. Therefore, to conduct a comparative study, we self-
implemented the following two methods from traditional soft-
ware to compare with DS™ (DeepSuite without metamorphic
mutation). The greedy algorithm (GE) [22], based on the
renowned reduction-based heuristics, repeatedly selects a test
that increases test coverage most until it cannot be improved
anymore. The clustering algorithm (CL) [23] groups test
inputs with similar coverage information into the same cluster,
and selects a test from each cluster to form the test suite. If a
test is found to be a failure, test inputs in the same cluster with
it will also be added into the test suite. We compare DS~ with
GE and CL, since test-case level mutation is not permitted in
these methods. The results can be seen in Table

In addition, to evaluate the performance of DeepSuite with
metamorphic mutation (denoted by DS), we also implement
two state-of-the-art methods that allow mutation testing to
compare with DeepSuite (the results can be seen in Table [[V]).
The gradient-based strategy (GA) [8] mutates original in-
puts towards high test coverage. Specifically, for each test,
the mutation stops when test coverage cannot be improved
within a predefined number of steps. The boundary sampling

MTD: Method; BS: Boundary Sampling; GA: The Gradient-based Algorithm;
DS: DeepSuite with Metamorphic Mutation.

strategy (BS) [20] selects tests close to the decision boundary,
so as to come up with small-sized subsets with high mutation
scores. To ensure the correctness of our implementation, we
strictly follow the implementation details accordingly and
cross-validate the implementation with co-authors.

As for the clustering algorithm, we use the k-means al-
gorithm to cluster test inputs, and empirically set k& to 10.
Given an uncovered neuron, the gradient-based algorithm tries
to modify an input such that the coverage is increased. For
each original test, we empirically set the maximum number
of trials to 80. In DeepSuite, we initialize the size of each
population to 80, and each individual is initially composed of 6
test inputs randomly picked from a pool of unlabeled tests. The
probability of mutation operators including addition, deletion,
and mutation of a test case is set to 0.3. To conduct a fair
comparison, we use the same constraints (i.e., the maximum
number of changed pixels and the maximum value of changes)
for DS and GA. The details of constraints can be seen in
Section To counter the randomness of these strategies,
we randomly select 5,000 tests from original tests to form
pools of unlabeled tests, and run each experiment for 30
times. Based on the observations in RQ1 and RQ2, to achieve
better performance, we set the threshold value for NC to 0.75,
compute the most active neurons in each layer for TKNC (i.e.,
set k = 1), and divide the range of values for each neuron into
10 equal sections (i.e., set £k = 10) for KMNC.

As a search-based algorithm, DeepSuite can keep searching
towards an optimal solution for an arbitrary length of time, and
stops at any time when allocated resources are exhausted. The
longer DeepSuite evolves, the better results will be obtained.
However, a developer might not be willing to wait for too long
to obtain results. A reasonable trade-off between effectiveness
and efficiency is in need. To conduct a fair comparison,
we conduct all the experiments with bounded computational

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

time. Specifically, for each model, we empirically set the
timeout to be 5 seconds per neuron. The intuition behind is
that the computational complexity of test coverage is linearly
correlated with the number of neurons. If DeepSuite can
generate test suites with high coverage but small sizes, we
expect that there are few duplication in generated test suites,
which makes the resulting test suites worth labeling.

Result. Table |l and [[V| summarize average test coverage and
sizes of test suites optimized by methods without and with
metamorphic mutation, respectively. The highest coverage and
the smallest test suite size are highlighted in bold. If there exist
more than one highest coverage, only the coverage accompa-
nied with the relatively small test suite size is highlighted.
It can be seen that compared with CL and GE, DeepSuite
without metamorphic mutation (denoted by DS™) achieves
the highest coverage in 30 out of 40 cases. Compared with
BS and GA, DeepSuite with metamorphic mutation (denoted
by DS) achieves the highest coverage in 35 out of 40 cases.
The high test coverage achieved by DS™ and DS indicate
that DeepSuite is able to exhibit more different behaviors
than those optimized by other methods. For instance, the
improvement of NC coverage indicates the activation of new
neurons that have not been activated by other methods. It
can also be observed from Table that DS~ generates the
smallest test suites among DS™, CL, and GE in all cases (3
cases have the same size with GE). From Table [[V] it can be
seen that DS generates the smallest test suites in 32 out of
40 cases. Combining the test coverage and test suite size, it
can be found that DeepSuite generated test suites with high
coverage but small sizes. The results in Table [[TI] and [[V]imply
that DeepSuite has the ability to save the labeling effort while
maintaining testing diversity.

From Table [[V|it can be found that in some cases, although
the test suites optimized by DS are not among the smallest
test suites, their coverage is much higher than the competitors.
For example, with 18 additional tests, DS improves the NBC
coverage on LeNet-1 by 236% times compared with DS~ and
GE. Moreover, it can also be observed that the coverage of test
suites optimized by CL is the lowest among CL, GE, and DS™.
A possible reason could be that CL only picks test cases within
the same cluster with a failing case, while it ignores other test
cases that may improve coverage and diversity. Although both
BS and DeepSuite aim at generating representative and small-
sized test suites, BS selects tests according to their distance
to the decision boundary. Therefore, it can be seen that BS
generates same-sized test suites for five metrics, and achieves
lower test coverage than DeepSuite. In addition, DS™ achieves
competitive coverage with GE, which repeatedly adds tests
into test suites until coverage cannot be improved anymore.
Nevertheless, the sizes of test suites optimized by DS~ are
the smallest among CL, GE, and DS~ in all cases. Similarly,
comparing GA and DS, it can be observed that DS achieves
competitive coverage with GA, while the test suite size of DS
is much smaller than GA. For instance, DS and DS~ only
need 6 test cases to reach the maximum NC coverage, while
CL, GE, and GA need 19, 12, and 11 test cases, respectively.
The reason is that DeepSuite takes into consideration both test

adequacy and test suite size during evolution. By controlling
the size of optimized test suites, DeepSuite is capable of saving
the labelling effort and achieving high testing coverage as well.

Answer to RQ3: DeepSuite can mitigate the oracle prob-
lem of testing DL-driven autonomous vehicles by generat-
ing small-sized test suites with competitive testing coverage
to save the labeling effort.

D. Effects of Mutation Operators in DeepSuite (RQ4)

In DeepSuite, we implement two mutation operators to
increase the local search capability to find optimal solutions.
Mutation at test-suite level, which is mandatory in DeepSuite,
randomly adds or deletes tests in each individual with a prede-
fined probability; mutation at test-case level, which is optional
in DeepSuite, allows metamorphic mutation of original tests.
In this section, we study the effects of test-case level mutation
and provide answers to RQ4. Like previous studies [8]], [19],
we adopt a conservative strategy to preserve the semantics of
inputs. Specifically, affine transformation is applied only once;
we set the maximum ratio of the number of changed pixels to
0.1, and set the maximum value that a pixel may change to
51 (i.e., 0.2x255).

Result. From Table and Table it can be observed
that DS achieves higher coverage than DS~ in 36 out of
40 cases, and they achieve the same coverage in the rest
cases. It is consistent with the intuition that more behaviors of
DNN models can be discovered by allowing domain-specific
metamorphic mutation of original tests. In the meantime, the
test suite sizes of DS are not larger than those of DS~ in 19 out
of 40 cases, which indicates that with metamorphic mutation,
DS has the capability of achieving high testing coverage with
limited extra testing budget.

Combining coverage and test suite size, it can be seen from
Table that in 15 out of 40 cases, DS achieves higher test
coverage than DS~ with no-larger test suites. In 21 out of
40 cases, DS increases the test coverage and the test suite
size in the meantime, which indicates that DS activates more
neurons by adding more synthetic tests. For instance, DS
achieves higher NBC coverage than DS™ by 694% times on
LeNet-4, with 65 extra tests. In the rest cases, DS maintains
test coverage with no-larger test suites than DS™. Moreover,
the results in Table also indicate that with metamorphic
mutation, GA and DS achieve higher coverage than methods
without metamorphic mutation. Among these methods, GA
achieves competitive coverage with DS. Nevertheless, test
suites optimized by GA have larger sizes than those optimized
by DS in almost all cases.

Since the goal of DeepSuite is to mitigate the oracle problem
by optimizing test suites that are worth labelling. To better
characterize the performance of DS and DS, we compute the
average coverage reached by per test for each coverage criteria.
Fig.] illustrates the efficiency of optimized test suites, where
the Y-axis indicates the average test coverage achieved by per
test generated by different methods. The following results can
be observed and inferred from Fig. |4} (1) Both DS and DS~ are
capable of optimizing test suites with relatively high coverage
but small sizes. Given a test criterion, the average test coverage

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

BS M CL ™ GE B GA ™ DS- ® DS

NC KMNC
Fig. 4: Averaged Test Coverage Achieved by per Test

NBC SNAC TKNC

achieved by tests optimized by DS is higher than others. It
indicates that there are fewer redundant tests in the test suites
optimized by DeepSuite, and more behaviours can be found
with limited labelling efforts. (2) The efficiency of test suites
(i.e., coverage per test) generated by DS is slightly better than
that of DS™, which is consistent with the intuition that with
metamorphic mutation, DeepSuite is able to touch more corner
cases with limited extra tests. (3) TKNC and NC are easier
to be satisfied by fewer test cases compared to KMNC, NBC
and SNAC. We note that DeepSuite is an extensible tool that

can be configured with an arbitrary criterion that is suited to
DL-based systems.

Answer to RQ4: With metamorphic mutation, DeepSuite
is capable of achieving higher test coverage over DL-driven
systems with limited extra testing budget.

V. DISCUSSION

A. Local Optimum and Randomness

The genetic algorithm often suffers from the premature
convergence, which is caused by an early homogenization
of genetic materials in the population. In this case, the
generated offsprings are not able to outperform their parents
and no valuable exploration can be performed further. To
prevent premature convergence, we adopt several strategies to
regain genetic variation, including incest prevention, uniform
crossover, and increasing population size. We also run each
experiment for 30 times and report the average results to
counter the randomness. Specifically, first, DeepSuite is config-
ured with lots of randomness during the entire evolution, from
initialization to mutation. To be specific, the initial population
consists of several individuals, where each individual contains
a set of test inputs randomly picked from the testing pool.
After selection, DeepSuite randomly exchanges a subset of
test cases in two adjacent test suites. In the test-suite level
mutation, DeepSuite randomly determines to add or remove
a test case for each individual, and the test case is picked
with randomness. In the test-case level mutation, DeepSuite
allows random input transformation within domain-specific
constraints for a random test case. In the evaluation, we run
each experiment for 30 times and compute the average results
to counter the randomness. In practical use, users can stop
DeepSuite at an arbitrary time, and it will maintain the best
individual it finds so far. For this reason, to stop and restart
DeepSuite with random initialization can also help to avoid
trapping in a local optimum.

B. The Efficiency and Effectiveness

Another concern about a genetic algorithm like DeepSuite
is the time cost, i.e., how long it takes to converge into the
optimal solution. As DeepSuite is an extensible framework that
consists of multiple components, the time cost of DeepSuite is
determined by its configuration. Specifically, users can select
or customize a test criterion as the first objective in the
fitness function. However, the computational complexity of
the criterion has an big impact on the efficiency of DeepSuite,
because it needs to compute the fitness scores for individuals
in each generation. Moreover, there are also some parameters
that may have some impacts on the efficiency, such as the
initialization and the probability of crossover and mutation.
To facilitate evolution, we have implemented some strategies
in DeepSuite. First, in the selection operator, we design
DeepSuite to select test suites with high coverage and small
sizes. When multiple test suites have the same coverage and
sizes, which usually happens when it evolves for enough
time, DeepSuite is configured to select test suites that are
closer to the activation of new neurons (e.g., close to the
predefined threshold of activation in NC), so as to improve
test coverage and find more behaviors. Moreover, when a test
case is randomly added into a test suite or mutated, most test
cases remain the same with the previous generation. In this
case, only new test cases are executed to calculate the new
fitness score.

C. Extensibility

DeepSuite is an extensible framework that can be applied
for general feed-forward DNNs, and combined with other
selection, crossover, and mutation operators not described in
this paper. Specifically, in the selection operator, we use five
test coverage metrics, as well as test suite size and distance
to form a multi-objective fitness function. Actually, DeepSuite
can be combined with other fitness functions suited for DNNs.
Similarly, although we describe the Tournament selection and
one-point crossover in the paper, other selection strategies
(e.g., non-dominated sorting) and crossover strategies (e.g.,
two-point crossover) can also be applied in DeepSuite. In the
mutation operator, DeepSuite mutates each individual (i.e.,
a test suite) at two levels: the test-case level and test-suite
level. While we use images as example inputs, mutation
at test-case level can be configured with domain-specific
transformations and constraints for other types of inputs in
autonomous vehicles. We also note that mutation at test-case
level is optional and extensible, since users may not want to
mutate original inputs. Users can determine whether synthetic
tests are permitted in optimized test suites.

D. Threats to Validity

Threats that may have an impact on the results of this
work include the following two aspects. First, the subject
datasets and neural networks in the evaluation could be a
threat to validity. However, we have conducted experiments
on several datasets and DNN models in different research
fields to mitigate it, including two popular image datasets

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

and a widely-used self-driving dataset. Second, when mutation
at test-case level is turned on, the metamorphic mutation
of original tests are assumed to preserve semantics of tests.
However, without formal verification, it is difficult to prove
that synthetic inputs are semantically useful to perform testing.
We mitigate this issue by applying conservative strategies that
only allow human imperceptible perturbations.

VI. CONCLUSION AND FUTURE WORK

DeepSuite is a framework to optimize test suites for DL-
driven autonomous vehicles; its goal is to generate test suites
which exhibit high testing adequacy and maintain small suite
size simultaneously. It does not aim to resolve automatic
oracle generation problem; instead it aims to mitigate this
problem. In this paper, we first conduct correlation analysis to
investigate the efficacy of existing test criteria for DL-driven
systems, which is of great interest in the field of deep learning
testing recently. It is shown that different test criteria may
have different impacts on structural testing; well-defined test
criteria are correlated to the diversity of test cases, and thus
can be useful to guide the data selection process of testing DL-
driven autonomous vehicles. Then, the empirical study on the
five criteria and eight DL models has clearly demonstrated
that the test suites optimized by DeepSuite is consistently
small but maintain competitive coverage. Moreover, DeepSuite
can incorporate metamorphic mutation operations to touch
more corner cases, improving test adequacy with optimal test
suite size. Finally, we note that DeepSuite is an extensible
framework that can be combined with any effective test criteria
and mutation strategies tailored to DL-driven autonomous
vehicles. The future work includes two aspects. On the one
hand, we plan to promote the efficiency of DeepSuite, and
design better fitness functions to facilitate the data selection
process. On the other hand, DeepSuite can be applied in many
types of inputs in autonomous vehicles other than images, such
as videos and radar inputs.

ACKNOWLEDGMENT

This work was supported by National Key Project of China
(No. 2020YFB1005700), National Natural Science Foundation
of China (No. 62102197, 62002178), NSFC-General Tech-
nology Joint Fund for Basic Research (No. U1936206), and
Natural Science Foundation of Tianjin, China (No. 20JC-
QNJC01730).

REFERENCES

[1] D. Topfer, J. Spehr, J. Effertz, and C. Stiller, “Efficient road scene
understanding for intelligent vehicles using compositional hierarchical
models,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 1, pp. 441-451, 2014.

[2] H. Fatemidokht, M. K. Rafsanjani, B. B. Gupta, and C.-H. Hsu,
“Efficient and secure routing protocol based on artificial intelligence
algorithms with uav-assisted for vehicular ad hoc networks in intelligent
transportation systems,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[3] H. Zhu, K.-V. Yuen, L. Mihaylova, and H. Leung, “Overview of
environment perception for intelligent vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584-2601, 2017.

[4] P. Yang, G. Zhang, L. Wang, L. Xu, Q. Deng, and M.-H. Yang, “A part-
aware multi-scale fully convolutional network for pedestrian detection,”
IEEE Transactions on Intelligent Transportation Systems, 2020.

[5

[6

=

[7

—

[8

—

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

Y. Tian, J. Gelernter, X. Wang, J. Li, and Y. Yu, “Traffic sign detection
using a multi-scale recurrent attention network,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 12, pp. 4466-4475, 2019.
F. Mirsadeghi, M. K. Rafsanjani, and B. B. Gupta, “A trust infrastructure
based authentication method for clustered vehicular ad hoc networks,”
Peer-to-Peer Networking and Applications, pp. 1-17, 2020.

A. Borkar, M. Hayes, and M. T. Smith, “A novel lane detection system
with efficient ground truth generation,” IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 1, pp. 365-374, 2011.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1-18.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2018, pp. 132—
142.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303—
314.

J. Campos, Y. Ge, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for test suite generation,” in Inter-
national Symposium on Search Based Software Engineering. Springer,
2017, pp. 33-48.

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, and et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp.
120-131.

Y. Sun, X. Huang, and D. Kroening, “Testing deep neural networks,”
arXiv preprint arXiv:1803.04792, 2018.

J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 4l1st International Con-
ference on Software Engineering (ICSE). 1EEE, 2019, pp. 1039-1049.
N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Ku-
rakin, C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan,
K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg,
J. Uesato, W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber,
and R. Long, “Technical report on the cleverhans v2.1.0 adversarial
examples library,” arXiv preprint arXiv:1610.00768, 2018.

Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 109-119.

A. Odena and 1. Goodfellow, “Tensorfuzz: Debugging neural networks
with coverage-guided fuzzing,” arXiv preprint arXiv:1807.10875, 2018.
F. Zhang, S. P. Chowdhury, and M. Christakis, “Deepsearch: Simple
and effective blackbox fuzzing of deep neural networks,” arXiv preprint
arXiv:1910.06296, 2019.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146-157.

W. Shen, Y. Li, Y. Han, L. Chen, D. Wu, Y. Zhou, and B. Xu,
“Boundary sampling to boost mutation testing for deep learning models,”
Information and Software Technology, vol. 130, p. 106413, 2021.

S. Singh and R. Shree, “A combined approach to optimize the test suite
size in regression testing,” Csi Transactions on Ict, vol. 4, no. 2-4, pp.
73-78, 2016.

C. T. Lin, K. W. Tang, J. S. Wang, and G. M. Kapfhammer, “Empirically
evaluating greedy-based test suite reduction methods at different levels
of test suite complexity,” Science of Computer Programming, vol. 150,
pp. 1-25, 2017.

C. Coviello, S. Romano, G. Scanniello, A. Marchetto, and A. Corazza,
“Clustering support for inadequate test suite reduction,” in 2018 IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2018.

F. Liu, J. Zhang, and E. Z. Zhu, “Test-suite reduction based on k-medoids
clustering algorithm,” in 2017 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC),
2017.

A. Schuler, “Application of search-based software engineering method-
ologies for test suite optimization and evolution in mission critical
mobile application development,” in /1th Joint Meeting on Foundations
of Software Engineering, 2017.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[26] V. Garousi, R. Ozkan, and A. Betin-Can, “Multi-objective regression
test selection in practice: An empirical study in the defense software
industry,” Information Software Technology, vol. 103, no. NOV., pp. 40—
54, 2018.

A. Panichella, F. Kifetew, and P. Tonella, “Automated test case genera-
tion as a many-objective optimisation problem with dynamic selection
of the targets,” IEEE Transactions on Software Engineering, pp. 1-1,
2017.

Q. Shi, J. Wan, Y. Feng, C. Fang, and Z. Chen, “Deepgini: Prioritizing
massive tests to reduce labeling cost,” arXiv preprint arXiv:1903.00661,
2019.

T. Byun, V. Sharma, A. Vijayakumar, S. Rayadurgam, and D. Cofer,
“Input prioritization for testing neural networks,” in 2019 IEEE Inter-
national Conference On Artificial Intelligence Testing (AlTest). 1EEE,
2019, pp. 63-70.

L. Zhang, X. Sun, Y. Li, and Z. Zhang, “A noise-sensitivity-analysis-
based test prioritization technique for deep neural networks,” arXiv
preprint arXiv:1901.00054, 2019.

[31] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lii, “Boosting operational
dnn testing efficiency through conditioning,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
499-509.

W. Tian, M. Lauer, and L. Chen, “Online multi-object tracking using
joint domain information in traffic scenarios,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 1, pp. 374-384, 2019.

L. M. Schmitt, “Theory of genetic algorithms,” Theoretical Computer
Science, vol. 259, no. 1-2, pp. 1-61, 2001.

S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-driven
deep learning system testing,” arXiv preprint arXiv:2002.03433, 2020.

[27]

(28]

[29]

[30]

[32]

[33]

[34]

Sihan Xu received the BSc and Ph.D. degrees in
computer science from Nankai University, Tianjin,
China, in 2013 and 2018, respectively. She spent
a year with National University of Singapore for
her research. She is currently a research fellow in
the College of Cyber Science, Nankai University.
Her research interests include deep learning testing,
software engineering, and Al security.

Zhiyu Wang is a graduate student in College of Cy-
ber Science, Nankai University, China. He received
his BEng degrees in computer science from Nankai
University, Tianjin, China. His research focuses on
deep learning testing and Al security.

Lingling Fan is an Associate Professor in College
of Cyber Science, Nankai University, China. She
received her Ph.D and BEng degrees in computer
science from East China Normal University, Shang-
hai, China in June 2019 and June 2014, respectively.
In 2017, she joined Nanyang Technological Univer-
sity (NTU), Singapore as a Research Assistant and
| then had been as a Research Fellow of NTU since
~ 2019. Her research focuses on software security, pro-
. 4 gram analysis and testing, and Android application
' analysis and testing. She got an ACM SIGSOFT
Distinguished Paper Award at ICSE 2018. More information is available on
https://lingling-fan.github.io/

Xiangrui Cai received his Ph.D. degree in computer
science from Nankai University, Tianjin, China. He
is currently an Assistant Professor with the College
of Cyber Science, Nankai University. He has pub-
lished several papers in international leading con-
ferences and journals. His research interests include
deep learning, natural language processing, time
series analysis, and healthcare data mining.

Hua Ji received his Ph.D. degree in computer
science from Nanjing University, Nanjing, China.
He is currently a Distinguished Professor with the
College of Cyber Science, Nankai University, Tian-
jin, China. His research interests include trusted Al,
deep learning testing, and distributed systems.

Siau-Cheng Khoo received the Ph.D. degree in
computer science from Yale University in 1992.
He is currently an Associate Professor with School
of Computing, National University of Singapore,
Singapore. His research interests include specifi-
cation mining, code analytics, static and dynamic
program analysis, domain-specific languages, and
aspect-oriented programming.

Brij B. Gupta received the PhD degree from IIT
Roorkee, India. He was a postdoctoral research
fellow in University of New Brunswick, Fredericton,
Canada. He is currently working as an assistant pro-
fessor with the Department of Computer Engineer-
ing, National Institute of Technology Kurukshetra,
India. He spent more than six months with the
University of Saskatchewan, Saskatoon, Canada, to
complete a portion of his research. He has visited
several countries to present his research. His biog-
raphy is selected to publish in the 30th Edition of
prestigious Marquis Who’s Who in the World (2012). He has published more
than 45 research papers in international journals and conferences of high
repute. His research interest includes information security, cyber security,
cloud computing, web security, intrusion detection, computer networks, and
phishing. He is member of ACM, SIGCOMM, the Society of Digital Informa-
tion and Wireless Communications (SDIWC), Internet Society, the Institute
of Nanotechnology, and a Life member of the International Association
of Engineers and the International Association of Computer Science and
Information Technology. He has also served as a technical program committee
member of more than 20 international conferences worldwide. In 2009, he
was selected for Canadian Common-wealth Scholarship and awarded by
the Government of Canada Award($10 000). He is an editor of various
international journals and magazines.

https://lingling-fan.github.io/

	Introduction
	Related Work
	Test Criteria for Deep Neural Networks
	Input Synthesis for DL Systems
	Test Prioritization
	The Oracle Problem

	Approach
	Overview of DeepSuite
	Fitness Function
	Selection Strategy
	Crossover
	Mutation
	Test-Suite Level
	Test-Case Level

	Stop Condition

	Evaluation
	Dataset
	Effectiveness of Test Coverage Criteria (RQ1 & RQ2)
	RQ1
	RQ2

	Performance of DeepSuite (RQ3)
	Effects of Mutation Operators in DeepSuite (RQ4)

	Discussion
	Local Optimum and Randomness
	The Efficiency and Effectiveness
	Extensibility
	Threats to Validity

	Conclusion and Future Work
	References
	Biographies
	Sihan Xu
	Zhiyu Wang
	Lingling Fan
	Xiangrui Cai
	Hua Ji
	Siau-Cheng Khoo
	Brij B. Gupta

