
Model-Based Continuous Verification

Lingling Fan∗, Sen Chen∗, Lihua Xu∗, Zongyuan Yang∗, Huibiao Zhu∗†

∗School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China

†Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

Email: {ecnujanefan, ecnuchensen}@gmail.com, {lhxu, zyyang}@cs.ecnu.edu.cn, hbzhu@sei.ecnu.edu.cn

Abstract—Model-based engineering has emerged as a key
set of technologies to engineer software systems. While system
source code is expected to match with the designed model,
legacy systems and workarounds during deployment would un-
doubtedly change the source code, making the actual running
implementation mismatch with its model. Such mismatch poses
a challenge of maintaining the conformance between the model
and the corresponding implementation. Prior techniques, such
as model checking and model-based testing, simply assumed
the sole correctness of the model or the implementation, which
is naive since they both could contain correct information (e.g.
representing either the software requirements or the actual
running environment).

In this paper, we aim to address this problem through model-
based continuous verification (ConV), an iterative verification
process that links the traditional model checking phase with
the software testing phase to a feedback loop, ensuring the
conformance between the system model and its implemen-
tation. It allows to execute the abstract test cases over the
implementation through a semi-automatic binding mechanism
to guide the update of the code, and augments system properties
from the actually running system to guide the update of the
model through model checking. Based on these techniques, we
implemented Eunomia, a conformance verification system, to
support the continuous verification process. Experiments show
that Eunomia can effectively detect and locate inconsistencies
both in the model and the source code.

Keywords-consistency checking; model-based testing; linear
temporal logic; model checking;

I. INTRODUCTION

Model-based engineering [1, 2] has emerged as a key set

of technologies to engineer software systems. Designing and

verifying a software system early in its lifecycle, even before

the implementation starts, helps to identify problems early

and thus prevent software faults from propagating to other

development phases [3].

From this traditional verification perspective, the designed

model is considered to be the “oracle” during the im-

plementation and maintenance phase. However, there al-

ways exist situations where the source code gets updated

without strictly following the model, when, for instance,

parts of the legacy system are reused or quick fixes must

be integrated during deployment. These situations reflect

the actual system environment or even additional software

requirements that may be ignored during the design phase.

Instead of assuming the sole correctness of the designed

model, software development is really an iterative process,

during which both the model and its source code should

be evaluated and updated. More often in industry, we see

situations where the designed model and its implementation

evolve frequently and concurrently, hence maintaining the

conformance becomes more and more challenging over time.

In this work, we propose model-based Continuous Ver-

ification (ConV), an iterative verification process that in-

tertwines traditional model checking with software testing

into a feedback loop. The key to successful and automated

support for this iterative process is to first execute the

abstract model-based test cases over its implementation, and

second retrieve appropriate information from the running

system for updating the system model when necessary. To

address these challenges, ConV first introduces a semi-

automatic binding mechanism to capture the relations be-

tween the abstracted model elements and its corresponding

implementation, so that the abstracted test cases, which are

generated from the system model, can be automatically exe-

cuted over its implementation with some manual preparation.

Secondly, ConV provides a property mining mechanism for

transferring the inconsistent properties into Linear Temporal

Logic (LTL [4, 5]), and augments it with newly generated

properties to guide the update of the system model. And LTL

is used as the input to identify the part of the model that

showcases the inconsistency. To the best of our knowledge,

although model checking has been widely adopted to verify

the system model, little effort exists to generate the system

properties from implementation.

ConV, as a continuous verification method, can be imple-

mented in different modeling and programming languages.

In this paper, built upon the previous work [6], we use Event-

B [7, 8] as the modeling language and Java as the pro-

gramming language, implementing Eunomia to fully support

the ConV process, and evaluate with several open source

systems. The experimental results show that our system can

effectively detect and locate the inconsistencies without false

alarms, achieving over 88% inconsistency coverage.

In summary, this paper presents the following original

2016 23rd Asia-Pacific Software Engineering Conference

1530-1362/16 $31.00 © 2016 IEEE

DOI 10.1109/APSEC.2016.35

81

contributions:

• An iterative verification process, linking the model

checking phase with software testing phase into a

feedback loop to check the conformance between the

model and its implementation;

• A semi-automatic binding mechanism to automatically

execute abstract test cases over implementation;

• A system property augmentation method based on

actual running system, contributing to guide and verify

model modification;

• An implemented system named Eunomia and its eval-

uation.

The remainder is organized as follows. In Section II, we

provide an overview of our approach. Section III describes

Eunomia, followed by the evaluation in Section IV. Section

V discusses the experimental results and limitations. In

Section VI, related studies are presented. Finally, Section

VII concludes.

II. CONV – THE ITERATIVE PROCESS

In this section, we provide a high-level overview of our

model-based continuous verification approach, and the key

parts of the iterative process.

����� ����

������������
���������������
���
��

������������

 !���"�������
��

���������
���
��

��	
��
��

��������	�����
������������
��

#����� #�����

Figure 1. Overview of model-based continuous verification

As shown in Fig. 1, the continuous verification process

includes five phases that can be performed iteratively: (i)

generating model-based test cases; (ii) binding the abstract

model with executable information from the implementation;

(iii) testing conformance between the designed model and

its implementation; (iv) augmenting the system properties

with newly discovered information from the actual running

system; (v) model checking with not only the user defined

system properties but important information reflecting actual

running system.

To help describe ConV, we introduce an illustrative ex-

ample mode system shown in Fig. 2. It is a module of

the Vehicle on Board Control (VOBC) system modeled in

Event-B. As shown in Fig. 2, the model of this system is

considered as a finite state automaton, where each event

has a precondition, and transits to another state when en-

countering a certain event. The transition model explicitly

reveals the possible behaviors of the system. The system

events include TRAIN start (i.e. entering the environment),

VOBC start (i.e. starting the VOBC cycle), VOBC special

(i.e. anticipating inconsistencies between the current mode

and change mode), etc. E.g, q0 is the initial state, when

encountering TRAIN start event, it transits to a new state

q1 where the train is inside the environment of the mod-
e system.

�������	
�	

��

����������
�
���

��

��

��

������	
�	

��������
�
�

��

��

�	

�����
��
�����
��	�
�
��
����	�

�����
��
�����
	��
�
��
����	�

�����
��
���������	��	
	��

��������
�
�

��������
�
�

��������
�
�

����������	����

�����������

����������	�

Figure 2. Transition model of Mode system

Given an inconsistent model and the source code, ConV

is able to provide the bi-directional modification instructions

model designers and developers. Fig. 3 illustrates the idea

of ConV through the example and the detailed information

of test case and binding examples are shown in Fig. 4 and

Fig. 5 respectively.

The inconsistent model and code fragment is shown in

Fig. 3(a) with a red box. train start = TRUE means the

train starts and is in the environment of the mode system,

and vobc start = TRUE means the VOBC mode starts, and

the train is in the inside of the VOBC mode system1.

We show how one could utilize ConV to support the bi-

directional verification. In traditional model-based testing

phase, abstract test cases are generated with respect to

the system model. We follow the trend and generate the

basic set of test cases to cover the possible behaviors of

designed model [9]. Such an abstract test case generated

from mode system is shown in Fig. 4. After each event,

including initialization, the state is recorded to assist fur-

ther verification in both directions. For example, the state

following INITIALISATION records the initial state of this

test case.

Binding. When dealing with the abstract test cases, people

1Note that the variables in the original model is outside and inside
respectively, we change them to train start and vobc start only to make it
easier to understand for readers.

82

(a) Inconsistent model & Implementation (b) Binding & Test case (c) Conformance checking & Property augmentation (d) Updated model & Implementation

public boolean TRAIN_start(){
if(train_start==false &&
vobc_start==false){
vobc_start = true;
// train_start = true;
...
return true;
}else
return false;}

TRAIN_start

q2

q0

q3

q4

q5

q6

Mismatch occurs at
Mode.TRAIN_start (mode.java:151)

G({train_start=FALSE & vobc_start=FALSE &
current_mode=off & mss_button=off & normal=TRUE}
& [TRAIN_start]
=> X{train_start=FALSE & vobc_start=TRUE &
current_mode=off & mss_button=off & normal=TRUE})

TRAIN_start

q2

TRAIN_mss_change

q1

q0

q3

q4

q5

q6
TRAIN_speed

TRAIN_events

public boolean TRAIN_start(){
if(train_start==false &&
vobc_start==false){
vobc_start = true;
train_start = true;
...
return true;
}else
return false;}

Binding

Test case

Figure 3. An illustrative example of ConV through mode system

<test_case ID="1">
<INITIALISATION>

<value type="variable">FALSE</value>
<value type="variable">off</value>
<value type="variable">1</value>
...

</INITIALISATION>
<state vobc_start="FALSE" train_start="FALSE".../>
<event name="TRAIN_start"/>
<state vobc_start="FALSE" train_start="TRUE".../>
<event name="VOBC_start"/>
<state vobc_start="TRUE" train_start="TRUE".../>
...

</test_case>

Figure 4. An abstract test case example

can hardly find a universal solution for all targeted real

systems. To alleviate this problem, we propose a semi-

automatic binding mechanism to bridge the gap between the

behaviors of the model and the functions of the implemen-

tation through templates, as shown in Fig. 5. It provides

a template implementing the ModelMapper interface to

map Events and States in terms of the specific source code.

The ModelMapper consists of two method declarations:

eventMapper and stateMapper.

• eventMapper. As for the eventMapper, users are

required to change the Event names (i.e. arguments

in the eventMapper class) of the model and the

corresponding function names of the source code in

the template. When executing, the template returns the

corresponding functions for the source code execution.

If they are not correctly mapped, it throws a exception:

Unknown event detected, so as to guide the users to

modify the binding process.

• stateMapper. The stateMapper requires users to

change the variables and the corresponding values of

1 public class ModeMapping implements ModelMapper {
2 private Mode m = Mode.getInstance();
3 // Bind Event (model) to Function (code)
4 public boolean executeEvent(Event event){
5 if(event.getName().equals("TRAIN_start")){
6 return m.TRAIN_start();
7 }else if(event.getName().equals("TRAIN_mss_change")){
8 return TRAIN_mss_change();
9 }else if

10 ...
11 else{
12 System.out.println("Unknown event:"+event.getName());
13 return false;
14 }
15 };
16 // Bind State (model) to Variable (code)
17 public State getCurrentState(){
18 State state = new State();
19 if(m.getoutside()==machine.Mode.BooleanType.TRUE){
20 state.getVariableValues().put("vobc_start", "TRUE");
21 }else{
22 state.getVariableValues().put("vobc_start", "FALSE");
23 }
24 ...
25 return state;
26 };
27 }

Figure 5. A binding example

the model to the variables declared in the source code.

When executing, the template not only returns the

variable values that benefits the execution over abstract

test cases, but it also outputs the execution results of

the system states used to augment properties later. The

template is able to deal with different data types, such

as Boolean, Integer and String. In terms of different

data types, it provides different forms of templates.

The template defines the relations between the two arti-

facts. When executing abstract test case, the state and event

information will be automatically extracted and executed

over the corresponding source code, with respect to user-

83

defined relations. As in the example mode system, the code

fragment shown in Fig. 3(b) is part of the core of binding.

It maps event TRAIN start and variable vobc start of the

model to function TRAIN start() and variable vobc start of

the source code, respectively.

Conformance Testing. As one of the key parts of ConV
process, it is important to analyze and maintain the confor-

mance between the system model and its implementation.

The conformance testing phase aims to analyze the system

behaviors under the premise of the given input (i.e. test

case), checking the executing results against the test cases

generated from the model to detect the mismatches between

both artifacts.

Specifically, after binding the transitions and states, the

abstract test cases can be automatically executed over the

implementation. For each test case, if all the transitions are

run successfully and the states are shown as expected, the

test case is then passed; otherwise, there are two possible

reasons the test case failed: the state change is different from

the state of original test case or one transition cannot be

executed at all as its precondition cannot be satisfied. No

matter whether the test case is passed, execution results are

recorded, as well as the mismatch location where implemen-

tation violates the designed model shown in Fig. 3(c).

System Property Augmentation. In ConV, inconsistent

system information is extracted from the actual running

implementation, and transformed into LTL, improving the

completeness of system properties in model checking. The

LTL generation process is as follows.

Algorithm 1 LTL Generation Algorithm

Input: Abstract test cases, execution result

// denoted as absTc and exeRe respectively

Output: LTL

1: LTL ← {}; // initialize LTL with empty

2: for each tc1 ∈ absTc and each tc2 ∈ exeRe do
3: if tc1.id == tc2.id then
4: compare the values of each variable;

5: if ! compare(tc1, tc2) then
6: LTL ← LTL ∪ tc2.get(propeties);
7: end if
8: end if
9: end for

10: return LTL

As shown in Algorithm 1, the input consists of the abstract

test cases and its execution results, and the output is the

inconsistencies represented in LTL. Firstly, LTL is initialized

with empty (line 1). For each test case, we compare the states

of each test case with execution results. If mismatch occurs,

the inconsistent property will be transformed to LTL (line 6).

The inconsistent semantics in the example can be extracted

and represented in LTL shown in Fig. 3(c). It means that the

model should be in the state where train start = false after

the event TRAIN start.
The resulting properties are often redundant, since each

State consists of several variables, and each Event might

also consist of several arguments. To alleviate this problem,

we propose an LTL optimization algorithm as depicted in

Algorithm 2.

Algorithm 2 LTL Optimization Algorithm

Input: Original LTL, IS // IS:InconsistencySet

Output: Optimized LTL

1: V R ← {}; // initialize VR with empty

// VR:VariableRange containing all variables and cor-

responding value spaces.

2: currentRange ← {};

3: for each variable ∈ TestCases do
4: V R ← V R ∪ (variable, variable.values);
5: end for
6: for each var ∈ V R do
7: originalRange ← V R.get(var);
8: for each incon ∈ IS do
9: currentRange ← currentRange ∪

incon.get(var);
10: end for
11: if originalRange equals currentRange then
12: InconLeft ← IS \ var;

13: Classify InconLeft by each value in

originalRange
14: if classified InconLeft equals each other then
15: IS ← IS \ var;
16: end if
17: end if
18: end for
19: return IS

Algorithm 2 takes the original LTL as input, and outputs

the optimized LTL. Let IS be the Inconsistency Set repre-

sented in LTL, and VR be the Variable Ranges to record all

variables and corresponding value spaces. VR is initialized

empty (line 1) and filled after traversing all the test cases to

obtain the value space of each variable (line 4). currentRange
refers to the value space obtained from IS.

For each variable in VR, we first extract the value space

from the VR (line 7) denoted originalRange, then extract

the value space of the each variable from LTL denoted

as currentRange (line 9). The two sets are then compared

(line 11). If currentRange does not equal originalRange,

which means not all the values of the variable are taken

into consideration in the analysis, the uncovered value may

lead to other effects. Thus this variable under discussion

should not be deleted from the LTL. Otherwise, we define

the rest of inconsistency set that excludes var as InconLeft
(line 12), and group it in terms of var (line 13). If the

classified InconLeft equals to each other (line 14), which

84

means the excluded variable (i.e. var) has no effect on the

LTL. Thus var can be deleted from IS (line 15). Finally IS
is reduced after combining the same inconsistencies.

We illustrate it with a simple example shown in Fig. 6.

The final LTL sequence contains two LTLs. We first extract

the value space of each variable, for example, the value space

of normal is {TRUE, FALSE}, which equals to the original

value space of normal (i.e., normal has no other values in the

whole program). The rest of the LTL that excludes normal
is exactly the same, indicating that normal has no effect on

this LTL and can be deleted.

G({train_start=FALSE & vobc_start=FALSE & normal=TRUE} => e (TRAIN_start) &
G({train_start=FALSE & vobc_start=FALSE & normal=FALSE} => e (TRAIN_start)

G({train_start=FALSE & vobc_start=FALSE } => e (TRAIN_start)

Figure 6. A LTL optimization example

Furthermore, these newly discovered properties are aug-

mented iteratively. Throughout the continuous verification

process,the model consistent with the source code is shown

in Fig. 3(d).

III. IMPLEMENTATION

The idea of ConV can be applied to most formal lan-

guages, we use Event-B and Java, implementing Eunomia to

fully support ConV, since Event-B can ensure the correctness

of design without ambiguity.

As shown in Fig. 7, Eunomia is built upon extended

Event-B MBT [8] and ProB [10]. Event-B MBT is a model-

based test case generator, we extend it with execution to not

only record the previous states of the events, but also the

post states. ProB is a model checker for B method. Eunomia
consists of three other main components: TCExecutor, LTL-
Generator and LTLOptimizer. Components communicate

through XML files or LTL files, reducing the coupling effect

and increasing the flexibility of the system.

����������	 	
����
���

�	����������

�	��������������

�������

�
����
�������

�����

���

������

������

Figure 7. System architecture of Eunomia

TCExecutor takes as input the abstract test cases, outputs

the passed test cases in the same xml format, as well as the

mismatch location in the source code. And LTLGenerator

takes as input from TCExecutor, extracts system properties

and outputs the inconsistent behaviors represented in LTL.

It represents each inconsistency as a dedicated LTL, using

“&” to join all the LTLs, which can be directly fed to

the model-checker. LTLOptimizer takes as input the original

LTLs, and automatically combines the LTLs and deletes

invalid variables, outputs the optimized LTLs. The LTLs

(the original or the optimized, depending on user’s choice)

are fed to ProB as input to check the model, and output

counterexamples to show the location of the mismatch. Thus

designers can update the model to comply with the code.

IV. EMPIRICAL EVALUATION

Our experimental study is designed to answer the follow-

ing research questions:

• RQ1: How does ConV perform in identifying inconsis-
tencies? This research question is to investigate whether

ConV is able to identify the inconsistencies existing in

the system.

• RQ2: How do different levels of abstraction of the
system model influence the effectiveness of ConV? This

research question is to investigate the abstraction level

that ConV fits for.

• RQ3: How does ConV prove that the identified in-
consistencies are accurate and valid? This research

question is to investigate whether ConV identifies in-

consistencies accurately.

• RQ4: How does ConV perform in locating the i-
dentified inconsistencies? This research question is to

investigate whether ConV is able to locate the identified

inconsistencies, and provide modification instructions.

A. Experimental Setup

Although the proposed approach can apply to different

formal languages, Eunomia is language-dependent. Thus we

conduct experiments on three Event-B models, available

publicly at Lab3012. We choose a water tank model, a wa-

ter boiler model and a mode system model. These models

are well validated in academia [11].

To evaluate the inconsistency-checking ability of ConV,

we conduct experiments on different models of different

scales. For setting up the inconsistency situation, we first

insert some inconsistencies into the source code, then check

the conformance with Eunomia. To avoid bias, we enumerate

through all the methods of the source code, and randomly

select the methods that should be inserted inconsistencies.

Additionally, We believe that ConV should work with

system models in different levels of abstraction. To evaluate

this, we further carry out experiments on the 9 refined

models of the mode system, which are treated as 9 separated

systems, named Mode0 to Mode8. The inconsistencies are

inserted randomly again into their respective versions of

2http://www.lab205.org/home/#!/hybrid-eventb

85

implementation. Furthermore, we also evaluate Eunomia’s
inconsistency locating capability. The interesting results

from this experiment setup cross-confirm the validity of the

inconsistency-checking ability from another aspect since the

inconsistencies are accurately revised according to Eunomia.

B. RQ1: Inconsistency-checking ability
The goal of this study is to evaluate the inconsistency-

checking ability of Eunomia. Table I shows the results

of extracting the inconsistencies of each system. The TCs
column lists the number of test cases generated from each

model using Event-B MBT. The Incons S column describes

the inconsistencies inserted into the source code and the

Incons I column gives the number of identified inconsis-

tencies, and the last column shows the ratio of the identified

inconsistencies. For example, with regard to mode system

in Table I, 192 test cases are generated from the model, and

60 inconsistencies are inserted into the source code, 55 of

which have been identified, achieving 91.67% inconsistency

coverage.

Table I
INCONSISTENCY-CHECKING ABILITY ON DIFFERENT SYSTEMS

Models TCs Incons S Incons I % of Incons identified

mode system 192 60 55 91.67

water boiler 18 23 21 91.30

water tank 17 20 18 90.00

C. RQ2: Cross-abstraction inconsistency-checking ability
Table II shows the results of evaluation on models in dif-

ferent abstract levels. The notations share the same meaning

as those in Table I. The data indicates that the percentage

of identified inconsistencies for all the models ranges from

88.89% to 96.67%. Since design models do not include all

necessary information to generate fully functional imple-

mentations, code can be defined beyond model definition

where Eunomia may miss some inconsistencies. Overall,

the data in Table I and Table II show that Eunomia can

efficiently detect the inconsistencies between model and

code. Even in the worst case, Eunomia can achieve over

88% of the inconsistency coverage.

Table II
CROSS-ABSTRACTION INCONSISTENCY-CHECKING ABILITY

Abstract levels TCs Incons S Incons I % of Incons identified

Mode0 8 9 8 88.89

Mode1 9 10 9 90.00

Mode2 18 20 18 90.00

Mode3 37 34 31 91.18

Mode4 31 30 29 96.67

Mode5 47 40 36 90.00

Mode6 97 46 43 93.48

Mode7 302 55 51 92.73

Mode8 192 60 55 91.67

During the experiment, we analyzed and compared the

results of Mode0 to Mode8 and found an interesting phe-

nomenon that two of the inconsistencies led to the same

location of the original model. Through further investigation,

we confirmed that the two inconsistencies were introduced

in the first layer of the model and were propagated to its

refinements. This phenomena further confirms Eunomia’s

effectiveness of identifying inconsistencies at different levels

of abstraction.

D. RQ3: Validity of the identified inconsistencies

The goal of this study is to evaluate the validity of the in-

consistencies identified by Eunomia. We carefully designed

two inconsistencies that we introduce to the system. These

two inconsistencies meet the following two requirements:

(i) They can be introduced in the most abstract level; and

(ii) they are able to propagate to the following levels. Our

hypothesis is that an inconsistency identification mechanism

should be able to catch these two consistencies at every

level of abstraction, and the two inconsistencies should

point to the same location. Therefore, we inserted the two

special inconsistencies and six random inconsistencies into

the first layer of the model, focusing on the number of

inconsistencies that continues existing from the original

model to the final one. We treat them as the same ones since

they lead to the same modification locations in the model

and the code.

0

2

4

6

Mode0 Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8

Models

o

f
Id

en
ti

fi
ed

 In
co

n
si

st
en

cy

Group known propagable randomly injected

Figure 8. Validity of the identified inconsistencies

As we can see in Fig. 8, the Models lists each refined

model of Mode system named Mode0 to Mode8. Note that

the inserted inconsistencies consist of the two special ones

and six randomly inserted ones, and we only insert them

to the most abstract model. The data in Fig. 8 indicate that

not all the inserted inconsistencies have been identified, and

the number of identified inconsistencies in each system is

not equal. Seven of them are identified by Mode0, while

only three of them are propagated and identified by Mode8.

Moreover, it decreases with the refining of the model.

Note that each system has identified the two special

inconsistencies and a newly discovered one. And we have

manually verified that the inconsistencies are represented in

86

LTL of the same semantics, indicating the three (2+1) identi-

fied inconsistencies are indeed the same ones, which proves

the validity of identified inconsistencies. We further analyze

other inconsistencies that are missing, and the reasons will

be discussed in Section V.

E. RQ4: Inconsistency-locating capability

The goal of this study is to evaluate the inconsistency

locating capability of Eunomia. To carry out the experi-

ment, We focus on the three identified inconsistencies of

Mode System in RQ3, which are represented as LTLs of

the same semantics. We ran the model checker to locate the

inconsistencies and reran Eunomia to verify the modifica-

tion.

Fig. 8 has shown that it is able to detect the inconsis-

tencies, thus, we either modify the models according to the

counterexamples displayed in model checker, or modify the

source code according to the location Eunomia provides.

To verify whether our modification correctly keeps the

conformance between the model and source code, either the

model checker or Eunomia re-check the updated ones. As

we expected, the inconsistencies detected by Eunomia were

eliminated.

In short, our continuous verification process supported by

Eunomia can efficiently locate the inconsistencies both in

the model and its implementation.

V. DISCUSSION

Reasons for missing behaviors. As shown in Table I

and Fig. 8, Eunomia missed some inconsistencies. Eunomia
partly depends on the efficiency of Event-B MBT since the

test cases are generated from Event-B MBT. Unfortunately,

as many other testing tools, test generation suffers from

infeasible paths and state space explosion. There are pos-

sibilities that the inserted inconsistencies exist in the infea-

sible paths of implementation that are not covered by the

generated test cases. As a result, test cases are passed over

the implementation without covering such inconsistencies,

Eunomia then reports that no inconsistencies are found. For

example, in the mode system, if there is an inconsistency

in the event VOBC do nothing that sets train start = true,

and we use Event-B MBT to generate test cases from model

as usual. However, the generated test cases cannot cover the

event VOBC do nothing due to the limitation of Event-B

MBT, and the test case are all passed without executing the

function of VOBC do nothing() in the code. As a result,

Eunomia misses such inconsistencies.

Another possible reason for missing behaviors is due to

the different abstraction of system model vs. its implementa-

tion. Specifically, test cases are generated from the abstract

model, hence inconsistencies maybe beyond pre-description

in the model. Under such circumstance, the generated test

cases will never violate the source code. As a result, the

generated test cases will all pass when executed over the

code, leading to the fact that there is no difference between

the test cases and the execution results.

Interesting phenomenon. As shown in Fig. 8, the number

of identified inconsistencies decreases. It is because the

inconsistencies that are inserted into the previous versions

may be restored during the refinement process. For example,

we set the variable train start = false, which was true
originally in the event VOBC Start in Mode0. While Mode 4

redefined that train start = true, which is conformable with

the source code. As a result, Eunomia reports that there is

no inconsistency between Mode4 and its implementation.

The limitations. The system that Eunomia can handle

depends on the number of events and variables in the model,

rather than the lines of source code. Because the number of

execution paths is determined by events and variables, which

directly affects the time cost of test case generation.

There are 47 events and 36 variables in the Mode system,

and Eunomia successfully handled it. Thus, although more

experimentations will help further find out the capability of

Eunomia, we believe that Eunomia is likely to handle more

complex systems.

VI. RELATED WORK

Conformance Checking. Heidenreich et al. [12] proposed

the JaMoPP approach to bridge the gap between modeling

languages and programming language Java. It treats source

code as models, and can transfer it to other programming

languages. However, this approach does not take the con-

struction or the transfer process into consideration.

DiaSpec [13] introduced interaction contrasts to guaran-

tee conformance between the architecture and its implemen-

tation by generating dedicated programming framework. It

can re-generate framework without overwriting the code,

but only support one-way changes of the architecture or the

code.

Czepa et al. [14] proposed plausibility checking of LTL-

based specifications. It can help users create the new con-

straint patterns and provide confidence through the LTL

representation. However, it cannot check the conformance

between the model and the source code.

Property Mining. Riedl-Ehrenleitner et al. [15] proposed

an approach that can mine the invariants from the code

and check them on the model to validate the efficiency.

This approach may cause difficulty in some complex code

analysis, requiring the high-conformance of Objects and

Functions in both model and code.

Su and Gabel et al. proposed DejaVu [16], a highly

scalable system for detecting these general syntactic incon-

sistency bugs between different source code versions. They

can automatically check whether there exist the defined in-

consistencies. However, they focus on mining the properties

between different code versions.

Mapping. Zheng et al. [17] proposed the 1.x-way
architecture-implementation mapping approach, which help-

87

s to manage changes and map the behavior architecture

specification to the implementation. However, this approach

maintains the conformance of the model and the code by

generating code.

Ubayashi et al. proposed Archface [18], based on

component and connector architecture [19], performs a

programming-level interface mechanism to bridge the gap

between the architecture and its implementation. However,

Archface is only designed for AOP [20] language and relies

on a dedicated compiler to detect mismatches.

VII. CONCLUSIONS

In this paper, we have proposed model-based continuous

verification, linking the traditional model checking and soft-

ware testing into a conformance checking feedback loop.

Our approach generates and executes test cases from the

system model when it is considered to be appropriate; and

augments system properties, when updating system model

is required, to represent the actual running implementation.

Furthermore, we implemented the approach in Eunomia,

and verified it on several open source systems. Experiment

results show that Eunomia can efficiently detect and locate

the inconsistencies both in the model and the source code.

ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China, under Grant 61502170 and National

Natural Science Foundation of China (Zhong Dan) Interna-

tional Cooperation Project, under Grant 61361136002.

REFERENCES

[1] D. C. Schmidt, “Guest editor’s introduction: Model-

driven engineering,” Computer, vol. 39, no. 2, pp.

0025–31, 2006.

[2] M. Brambilla, J. Cabot, and M. Wimmer, “Model-

driven software engineering in practice,” Synthesis Lec-
tures on Software Engineering, vol. 1, no. 1, pp. 1–182,

2012.

[3] B. Nuseibeh, S. Easterbrook, and A. Russo, “Leverag-

ing inconsistency in software development,” Computer,

vol. 33, no. 4, pp. 24–29, 2000.

[4] K. Y. Rozier, “Linear temporal logic symbolic model

checking,” Computer Science Review, vol. 5, no. 2, pp.

163–203, 2011.

[5] S. Babenyshev and V. Rybakov, “Linear temporal logic

ltl: basis for admissible rules,” Journal of Logic and
Computation, p. exq020, 2010.

[6] X. Ge and L. Xu, “Prominer: Bi-directional consisten-

cy checking framework based on system properties,”

2016.

[7] J.-R. Abrial, Modeling in Event-B: system and software
engineering. Cambridge University Press, 2010.

[8] I. Dinca, F. Ipate, L. Mierla, and A. Stefanescu, “Learn

and test for event-b–a rodin plugin,” in Abstract State

Machines, Alloy, B, VDM, and Z. Springer, 2012, pp.

361–364.

[9] I. Schieferdecker, “Model-based testing,” IEEE soft-
ware, no. 1, pp. 14–18, 2012.

[10] M. Leuschel and M. Butler, “Prob: A model checker

for b,” in FME 2003: Formal Methods. Springer, 2003,

pp. 855–874.

[11] W. Su, J.-R. Abrial, and H. Zhu, “Complementary

methodologies for developing hybrid systems with

event-b,” in International Conference on Formal En-
gineering Methods. Springer, 2012, pp. 230–248.

[12] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende,

“Closing the gap between modelling and java,” in

Software Language Engineering. Springer, 2010, pp.

374–383.

[13] D. Cassou, E. Balland, C. Consel, and J. Lawall,

“Leveraging software architectures to guide and verify

the development of sense/compute/control application-

s,” in Proceedings of the 33rd International Conference
on Software Engineering. ACM, 2011, pp. 431–440.

[14] C. Czepa, H. Tran, U. Zdun, T. T. K. Tran, E. Weiss,

and C. Ruhsam, “Plausibility checking of formal busi-

ness process specifications in linear temporal logic,” in

CAISE, 2016.

[15] M. Riedl-Ehrenleitner, A. Demuth, and A. Egyed, “To-

wards model-and-code consistency checking,” in Com-
puter Software and Applications Conference (COMP-
SAC), 2014 IEEE 38th Annual. IEEE, 2014, pp. 85–

90.

[16] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su,

“Scalable and systematic detection of buggy incon-

sistencies in source code,” in ACM Sigplan Notices,

vol. 45, no. 10. ACM, 2010, pp. 175–190.

[17] Y. Zheng and R. N. Taylor, “Enhancing architecture-

implementation conformance with change management

and support for behavioral mapping,” in Proceedings
of the 34th International Conference on Software En-
gineering. IEEE Press, 2012, pp. 628–638.

[18] N. Ubayashi, J. Nomura, and T. Tamai, “Archface:

A contract place where architectural design and code

meet together,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-
Volume 1. ACM, 2010, pp. 75–84.

[19] R. Allen and D. Garlan, “Formalizing architectural

connection,” in Proceedings of the 16th international
conference on Software engineering. IEEE Computer

Society Press, 1994, pp. 71–80.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-

oriented programming,” in European conference on
object-oriented programming. Springer, 1997, pp.

220–242.

88

