
Has My Release Disobeyed Semantic Versioning? Static
Detection Based on Semantic Differencing

Lyuye Zhang
School of Computer Science and

Engineering, Nanyang Technological
University

Singapore, Singapore
zh0004ye@e.ntu.edu.sg

Chengwei Liu
School of Computer Science and

Engineering, Nanyang Technological
University

Singapore, Singapore
chengwei001@e.ntu.edu.sg

Zhengzi Xu∗
School of Computer Science and

Engineering, Nanyang Technological
University

Singapore, Singapore
zhengzi.xu@ntu.edu.sg

Sen Chen
College of Intelligence and

Computing, Tianjin University
Tianjin, China

senchen@tju.edu.cn

Lingling Fan
College of Cyber Science, Nankai

University
Tianjin, China

linglingfan@nankai.edu.cn

Bihuan Chen
School of Computer Science and
Shanghai Key Laboratory of Data

Science, Fudan University
Shanghai, China

bhchen@fudan.edu.cn

Yang Liu
School of Computer Science and

Engineering, Nanyang Technological
University

Singapore, Singapore
yangliu@ntu.edu.sg

ABSTRACT
To enhance the compatibility in the version control of Java Third-
party Libraries (TPLs), Maven adopts Semantic Versioning (SemVer)
to standardize the underlying meaning of versions, but users could
still confront abnormal execution and crash after upgrades even if
compilation and linkage succeed. It is caused by semantic breaking
(SemB) issues, such that APIs directly used by users have iden-
tical signatures but inconsistent semantics across upgrades. To
strengthen compliance with SemVer rules, developers and users
should be alerted of such issues. Unfortunately, it is challenging
to detect them statically, because semantic changes in the internal
methods of APIs are difficult to capture. Dynamic testing can con-
firmingly uncover some, but it is limited by inadequate coverage.

To detect SemB issues over compatible upgrades (Patch and
Minor) by SemVer rules, we conduct an empirical study on 180 SemB
issues to understand the root causes, inspired by which, we propose
Sembid (Semantic Breaking Issue Detector) to statically detect such
issues of TPLs for developers and users. Since APIs are directly used
by users, Sembid detects and reports SemB issues based on APIs.
For a pair of APIs, Sembid walks through the call chains originating
∗Zhengzi Xu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556956

from the API to locate breaking changes by measuring semantic diff.
Then, Sembid checks if the breaking changes can affect API’s output
along call chains. The evaluation showed Sembid achieved 90.26%
recall and 81.29% precision and outperformed other API checkers
on SemB API detection. We also revealed Sembid detected over 3
times more SemB APIs with better coverage than unit tests, the
commonly used solution. Furthermore, we carried out an empirical
study on 1, 629, 589 APIs from 546 version pairs of top Java libraries
and found there were 2∼4 times more SemB APIs than those with
signature-based issues. Due to various version release strategies,
33.83% of Patch version pairs and 64.42% of Minor version pairs
had at least one API affected by any breaking.

ACM Reference Format:
Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan
Chen, and Yang Liu. 2022. Has My Release Disobeyed Semantic Version-
ing? Static Detection Based on Semantic Differencing. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3551349.3556956

1 INTRODUCTION
The frequent updates of Third-party Libraries (TPLs) prompt down-
stream users to upgrade their dependencies accordingly to embrace
necessary new features and bug fixes [69, 70], while the potentially
incompatible changes could lead to abnormal execution or even
crashes of downstream projects according to [50]. To address this
problem, modern package managers adopt Semantic Versioning
(SemVer) [23] to control the compatible upgrading of TPLs. SemVer
divides upgrades into three types, namely, Major, Minor, and Patch
and requires changes in Minor and Patch upgrades to be backward

https://orcid.org/0000-0003-3087-9645
https://orcid.org/0000-0003-1175-2753
https://orcid.org/0000-0002-8390-7518
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0001-7300-9215
https://doi.org/10.1145/3551349.3556956
https://doi.org/10.1145/3551349.3556956

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu

compatible. Unfortunately, it is unlikely to guarantee all versions
strictly satisfy SemVer rules, especially in legacy platforms like
Maven [19] for Java. For example, Hadoop-hdfs [9], a widely-used
framework of Apache was susceptible to a breaking issue [10] dur-
ing Patch upgrade (3.0.0-3.0.1). Not limited to popular Java projects
like Hadoop, the breaking issues commonly exist in the Maven
ecosystem. As revealed by Ochoa et al. [52], 20.1% of non-Major
upgrades in the Maven repository [20] have introduced breaking
changes that could induce massive unexpected downstream issues.

In recent years, works have been proposed to detect the breaking
compatibility issues at the API level of TPLs. Since APIs serve
as the entry points for downstream projects to access TPLs, an
upgrade is usually considered compatible if all APIs are compatible.
Many API compatibility checkers [1, 3, 6, 7, 11, 22] are proposed
to uncover signature-based errors, such as ClassNotFoundException
and NoSuchMethodError. We call these errors Syntactic Breaking
(SynB) in this paper. However, these checkers fail to detect the
breaking issues caused by the internal behavioral changes, which
are often exposed at run-time, such as abnormal output, unexpected
exceptions, and even crashes [37, 59]. That is because internal
changes often dwell in the bodies of indirectly called methods that
are not considered by these checkers.We call the internal behavioral
changes without syntactic errors Semantic Breaking (SemB).

Unlike SynB, SemB is muchmore difficult to be detected. Existing
works mostly rely on manually curated dynamic regression tests
to detect them. For example, Mostafa et al. [50] found only 13 of
126 real-world SemB APIs could be detected by existing unit tests.
Chen et al. [32] have proposed DeBBI which accelerates unit tests
from downstream projects to facilitate the detection, but it still
relies on testing which is handicapped by the coverage of limited
test cases. Therefore, detecting SemB issues properly is challenging,
without which, SemVer rules cannot be completely enforced. Then,
unexpected breaking upgrades would sabotage the community.

To bridge this gap, we seek to detect SemB statically for better
coverage of potential issues. We are facing the following chal-
lenges. C1: It is unclear how to statically infer dynamic behavioral
changes by source code diff, which has hardly been studied. C2:
Syntactic changes (including inter-method changes), such as the
refactoring, which hardly changes the semantics, are difficult to be
excluded. C3: Some behavioral changes, such as bug fixing, are con-
sidered compatible, and thus allowed by SemVer. They are supposed
to be ruled out, but there is no specific criterion to identify them.
C4: A considerable amount of internal changes implicitly optimize
the logic or performance, which hardly changes the output of APIs,
thus not observable from the user side. Without the impact analysis
of these changes, naive detection may lead to false positives.

To this end, we propose, to the best of our knowledge, Sembid
(Semantic Breaking Issue Detector), the first static tool to detect
potential SemB over Patch and Minor upgrades against SemVer
rules based on APIs. First, to address the challenge C1, we con-
ducted a study on causes of SemB which indicated inconsistent
behaviors were reflected by the diff of dependency relationships
derived from static slicing [63]. Then, to address syntactic changes
in C2, Sembid extracts abstract semantic information free from
syntactic changes. It starts with Intermediate Representation (IR)
and traverses the methods within the call chains of a given API pair
to form clusters of changed methods to neutralize inter-method

changes. Given a cluster, Sembid recursively backward slices the
global output inter-procedurally to derive semantic relationships
between global input and output, which eliminate local syntactic
changes. Sembid heuristically constructs semantic graphs based
on sliced statements and measures their semantic diff based on
subgraph isomorphism to infer the potential SemB. For C3, dur-
ing the semantic diff measurement, benign changes are identified
and excluded by pre-summarised patterns to avoid false alarms.
Last, for C4, along call chains from the cluster, Sembid verifies if
the captured SemB can influence the API’s output by checking its
triggerability as well as whether it can propagate back to the API.

To evaluate the accuracy of SemB detection of Sembid, we first
experimented for the benchmark with other API checkers. Due to
the lack of a benchmark dataset, we manually formed one consist-
ing of 77 version pairs with 671 APIs. Sembid outperforms other
state-of-the-art Java API compatibility checkers [6–8, 11, 22] with
90.26% recall and 81.29% precision. Then, over all APIs of breaking
Patch upgrades, we compared Sembid with unit tests in terms of
the effectiveness of breaking API detection. It demonstrates that
Sembid with better API coverage could detect over 4 times more
SemB APIs than unit tests. Furthermore, we carried out a study on
21 top Java libraries with 546 version pairs from Maven Repository
[20] to evaluate the compliance with SemVer at the levels of API,
version pair, and library respectively. We found that, compared
with 0.38% and 1.04% of APIs affected by SynB for Patch and Mi-
nor respectively, 1.10% and 4.06% of APIs additionally brought in
SemB issues. For version pairs, due to various upgrading strategies
adopted by libraries, 33.83% of Patch and 64.42% ofMinor upgrades
have breaking pairs. We conclude our main contributions as follows:
• We conducted a study to understand the root causes of SemB
and summarized the patterns of benign semantic changes.
• We proposed the first static SemB issue detector (Sembid) to
detect potential SemB issues against SemVer rules.
• We built a benchmark dataset of APIs for SemB detection to facil-
itate further research, which is accessible on our website [13].1
• We carried out a study on compliance with SemVer rules in
the top 21 real-world Java libraries. We found version release
strategies adopted by libraries varied greatly so that SemVer rules
were not reliable for users. The prevalence of SemB proved the
necessity of detecting SemB when upgrading TPLs.

2 BACKGROUND AND MOTIVATION
2.1 Semantic Versioning Rules
The Semantic Versioning [23] stipulates rules for three upgrades:
• Patch version Z (x.y.Z): "MUST be incremented if only backward-
compatible bug fixes are introduced. A bug fix is defined as an
internal change that fixes incorrect behavior."
• Minor version Y (x.Y.z): "MUST be incremented if new,
backward-compatible functionality is introduced to the public API.
It MUST be incremented if any API is deprecated."
• Major versionX (X.y.z): "MUST be incremented if any backward-
incompatible changes are introduced to the public API. It MAY also
include minor and patch level changes."

1Data set is accessible at https://sites.google.com/view/ase22semverdetection/homepage

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USAHas My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Listing 1: A Motivating Example from httpcore:4.2-4.3
1
2 -if (this.contentDecoder != null &&
3 - (this.session.getEventMask ()& SelectionKey.OP_READ)>0) {
4 +if (this.contentDecoder != null) {
5 + while ((this.session.getEventMask ()& SelectionKey.OP_READ)>0) {
6 handler.inputReady(this , this.contentDecoder);
7 if (this.contentDecoder.isCompleted ()){
8 resetInput ();
9 + break;
10 + if (!this.inbuf.hasData ())
11 + break;
12 }}}

The breaking changes are not allowed in Patch and Minor up-
grades. Hence, to enhance compliance with SemVer rules, Sembid
aims at detecting breaking changes based on API over Patch andMi-
nor upgrades to alert developers and users. Unlike SynB, SemB can
hardly be detected by existing tools so Sembid focuses on detecting
SemB to bridge the gap.

2.2 Motivating Example
The example in Listing 1 is used to demonstrate our motivation.

The code was collected from a Jira issue [5] of http-core [15]. The
upgrade caused the decoder to be stuck in an infinite loop when it
reaches the end of the buffer if the input buffer contains a character
‘\r’ that is never consumed. First, the change was not documented
as a breaking, which suggests the breaking was unexpected. Second,
the unit tests failed to uncover the case. Last, the Minor upgrade
from version 4.2 to 4.3 intuitively indicated backward compatibility.
Therefore, the judgment of the author is not always reliable so
a static tool with better coverage is needed to detect potential
breaking issues for Patch and Minor upgrades.

3 EMPIRICAL STUDY
In this section, we study the causes of SemB and the code patterns
of benign changes.

3.1 Study of Root Causes of Semantic Breaking
To detect SemB, we conducted a study regarding its root causes.

3.1.1 Causes of SemB. Mostafa et al. [50] studied the Behavior
Backward Incompatibilities in Java software, which also refers to
the breaking APIs beyond signatures like SemB. They categorized
the immediate causes into three: usage change (32.77%), e.g. en-
able/disable poor input; better output (55.74%), e.g. output format
change; and other reasons(11.49%), e.g. internal structure changes.

Despite the immediate causes, Mostafa et al. [50] only focused
on the user side of APIs but failed to dive into the internal code to
locate the root causes. Since no other works have studied the root
causes of SemB, we conducted one by analyzing the internal code
changes of APIs that caused SemB with the aid of existing static
java analysis tools, BCEL [12] and Soot [60]. The study included
180 real-world SemB issues (126 from [50], 54 collected by ourselves
in recent 3 years) with commits. We found SemB had various forms
which could hardly be summarised as patterns at the source code
level, but they usually occurred along with the following changes:
• (73.33%) The changed execution logic. In Listing 1, the conditions
remained the same (L2 & L4), but the if statement was altered to
a while loop, which led to an infinite loop.

• (91.67%) The changed calculation of the output. For example, in
a self-increment function, the change of calculation from 𝑎+ = 1
to 𝑎+ = 2 obviously modifies the output, while the execution
logic remains the same.

The two types of causes overlapped in over 60% of issues. The first
change in the execution logic embodied the inconsistency in Control
Flow Graph (CFG). The second change in the calculation process,
embodied in the changed data flow, can reflect the inconsistency
of output values. For 86% of cases, the SemB changes dwelt in
internalmethods called byAPIs instead of entrymethods. Therefore,
internal code analysis is required to detect SemB.

3.1.2 What ChangesWill NOT Cause SemB?. Since successful
upgrades have no specific indicator (no-issue is not enough), we
could only study successful regression tests to understand why
some changes do not cause SemB. We firstly collected 20 most
used Maven libraries according to Maven Repository [20] with 77
version pairs and ran regression tests by testing the new implemen-
tation with old unit tests. 20, 373 tested APIs were derived. Then,
we filtered out APIs with no changes in called methods to obtain
2, 191 APIs. 500 successful cases with binary change were randomly
selected. For each case, we manually analyzed the diff dwelling in
the methods called by the APIs to check if there existed an input
to trigger the failure of unit tests. If the input did not exist, the
reasons were collected. The cases of each reason may overlap with
one another. The APIs passed regression tests due to:
• (27.4%) Inadequate input to trigger SemB.Wemanually exam-
ined these cases and found there existed input that could trigger
SemB. Sembid is designed to overcome such limitations of tests.
• (19.6%) Refactoring. By [21], refactoring is the process of re-
structuring the existing factoring without changing its external
behaviors, which is prevalent in Java by [61]. In general, the rele-
vant API-level refactoring can be categorized as inter-method and
intra-method. Inter-method refactoring, e.g. Extract Method, and
Inline Method, is the most common type because it is frequently
used to extend API flexibility based on Java polymorphism [25].
• (2.4%) SemB not triggerable by old input. The inconsistent
behaviors cannot be triggered by the old variables, but only by
the variables in the new version. This situation mostly occurs for
new functionality, because the new input serves as the option to
trigger additional behaviors.
• (14.6%) Internal SemB has no impact on API output The
changed output of breaking changes has no impact on the output
of the API to be observed by users. For example, if the logs are
changed, while the return value remains the same, the output of
the API is considered unchanged.
• (36.0%) Benign changes As allowed by SemVer, benign changes,
such as bug fixes, and new functionality, do not substantially
break the original semantics. They usually would not break down-
stream projects, and thus are considered false positives.
We found that except for the first reason (limitation of unit

tests), the rest is the false alarm of SemB to be ruled out. For the
refactoring, Sembid extracts inter-procedural semantic graphs to
eliminate syntactic refactoring. For the third and fourth reasons,
Sembid excludes them by checking the impact of the captured SemB
changes. As for the benign changes, we further conduct a study to
identify them by patterns.

The breaking changes are not allowed in Patch and Minor up-
grades. Hence, to enhance compliance with SemVer rules, Sembid
aims at detecting breaking changes based on API over Patch andMi-
nor upgrades to alert developers and users. Unlike SynB, SemB can
hardly be detected by existing tools so Sembid focuses on detecting
SemB to bridge the gap.

2.2 Motivating Example
The example in Listing 1 is used to demonstrate our motivation.

The code was collected from a Jira issue [5] of http-core [15]. The
upgrade caused the decoder to be stuck in an infinite loop when it
reaches the end of the buffer if the input buffer contains a character
‘\r’ that is never consumed. First, the change was not documented
as a breaking, which suggests the breaking was unexpected. Second,
the unit tests failed to uncover the case. Last, the Minor upgrade
from version 4.2 to 4.3 intuitively indicated backward compatibility.
Therefore, the judgment of the author is not always reliable so
a static tool with better coverage is needed to detect potential
breaking issues for Patch and Minor upgrades.

3 EMPIRICAL STUDY
In this section, we study the causes of SemB and the code patterns
of benign changes.

3.1 Study of Root Causes of Semantic Breaking
To detect SemB, we conducted a study regarding its root causes.

3.1.1 Causes of SemB. Mostafa et al. [50] studied the Behavior
Backward Incompatibilities in Java software, which also refers to
the breaking APIs beyond signatures like SemB. They categorized
the immediate causes into three: usage change (32.77%), e.g. en-
able/disable poor input; better output (55.74%), e.g. output format
change; and other reasons(11.49%), e.g. internal structure changes.

Despite the immediate causes, Mostafa et al. [50] only focused
on the user side of APIs but failed to dive into the internal code to
locate the root causes. Since no other works have studied the root
causes of SemB, we conducted one by analyzing the internal code
changes of APIs that caused SemB with the aid of existing static
java analysis tools, BCEL [12] and Soot [60]. The study included
180 real-world SemB issues (126 from [50], 54 collected by ourselves
in recent 3 years) with commits. We found SemB had various forms
which could hardly be summarised as patterns at the source code
level, but they usually occurred along with the following changes:

• (73.33%) The changed execution logic. In Listing 1, the conditions
remained the same (L2 & L4), but the if statement was altered to
a while loop, which led to an infinite loop.

• (91.67%) The changed calculation of the output. For example, in
a self-increment function, the change of calculation from a+ = 1
to a+ = 2 obviously modifies the output, while the execution
logic remains the same.

The two types of causes overlapped in over 60% of issues. The first
change in the execution logic embodied the inconsistency in Control
Flow Graph (CFG). The second change in the calculation process,
embodied in the changed data flow, can reflect the inconsistency
of output values. For 86% of cases, the SemB changes dwelt in
internalmethods called byAPIs instead of entrymethods. Therefore,
internal code analysis is required to detect SemB.

3.1.2 What Changes Will NOT Cause SemB?. Since success-
ful upgrades have no specific indicator (no-issue is not enough),
we could only study successful regression tests to understand why
some changes do not cause SemB. We firstly collected 20 most
used Maven libraries according to Maven Repository [20] with 77
version pairs and ran regression tests by testing the new implemen-
tation with old unit tests. 20, 373 tested APIs were derived. Then,
we filtered out APIs with no changes in called methods to obtain
2, 191 APIs. 500 successful cases with binary change were randomly
selected. For each case, we manually analyzed the diff dwelling in
the methods called by the APIs to check if there existed an input
to trigger the failure of unit tests. If the input did not exist, the
reasons were collected. The cases of each reason may overlap with
one another. The APIs passed regression tests due to:

• (27.4%) Inadequate input to trigger SemB. We manually ex-
amined these cases and found there existed input that could
trigger SemB. Sembid is designed to overcome such limitations
of tests.
• (19.6%) Refactoring. By [21], refactoring is the process of re-
structuring the existing factoring without changing its external
behaviors, which is prevalent in Java by [61]. In general, the rele-
vant API-level refactoring can be categorized as inter-method and
intra-method. Inter-method refactoring, e.g. Extract Method, and
Inline Method, is the most common type because it is frequently
used to extend API flexibility based on Java polymorphism [25].
• (2.4%) SemB not triggerable by old input. The inconsistent
behaviors cannot be triggered by the old variables, but only by
the variables in the new version. This situation mostly occurs for
new functionality, because the new input serves as the option to
trigger additional behaviors.
• (14.6%) Internal SemB has no impact on API output The
changed output of breaking changes has no impact on the output
of the API to be observed by users. For example, if the logs are
changed, while the return value remains the same, the output of
the API is considered unchanged.
• (36.0%) Benign changesAs allowed by SemVer, benign changes,
such as bug fixes, and new functionality, do not substantially
break the original semantics. They usually would not break down-
stream projects, and thus are considered false positives.

We found that except for the first reason (limitation of unit
tests), the rest is the false alarm of SemB to be ruled out. For the
refactoring, Sembid extracts inter-procedural semantic graphs to
eliminate syntactic refactoring. For the third and fourth reasons,
Sembid excludes them by checking the impact of the captured SemB

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu

changes. As for the benign changes, we further conduct a study to
identify them by patterns.

3.2 Study of Benign Changes
Sembid aims at identifying the benign changes to avoid reporting
them as breaking. Since the benign changes stipulated by SemVer
are not well defined, we summarise the syntactic patterns of benign
changes by manually studying commits with such intentions. Then,
these patterns will be categorized by their semantic representations
on PDG and CFG to be automatically identified. According to [45],
the intentions of commits can be categorized into (1) Bug fixing;
(2) Performance improvement; (3) Feature introduction, deletion,
and modification. Since the performance improvement does not
explicitly change the output, it would usually not be caught by
Sembid, thus unnecessary to identify it. As feature deletion and
modification are not allowed by SemVer, they should be directly
reported instead of being ruled out. Hence, we focused on bug
fixes and new functionality. We collected 584 commits from the
most starred 25 Java projects on Github to summarise the patterns
by searching for the keywords in commits, which are fix, correct,
improve, address, tweak, clean up, and add/new feature/functionality.
Then, the diffs were manually categorized into several patterns.

3.2.1 Bug Fixes (393 cases) Categories.
• Additional/ conditions and branches. (41.85%) The change
introduces additional conditions to narrow down or broaden the
input range. The conditions mostly introduce new branches of
statements for additional handling. This is usually to enforce the
original rules by disallowing illegitimate input.
• Changed/deleted conditions and branches. (13.28%) The
original conditions are changed or deleted to fix unreasonable
behaviors. Usually, the change handles the illegitimate input to
enforce the original rules, but it sometime introduces regression
errors.
• Similar substitution. (11.60%) Variable types or methods are
substituted with similar ones with semantically equivalent
method names for better implementation. The original func-
tionality is meant to be maintained.
• Additional try/catches. (10.08%) It introduces additional try/-
catch pairs or adds catches to existing try. This kind of change
handles more exceptions to avoid unexpected crashes.
• Assignment revision. (10.76%) The output assignments are
changed partially or completely to correct wrong behaviors or
improve sub-optimal behaviors. Such changes can also be found
in breaking issues because they could break downstream projects
unexpectedly if they are used incorrectly.
• Auxiliary variables. (6.68%) Auxiliary variables are introduced
to control the process, which often participates in if conditions.
For instance, a counter is used to avoid infinite loops.
• Other. (5.75%) It consists of changing internal type, initializing
variables, improving method/variable modifiers, etc. They slightly
change syntax without modifying the original semantics.

3.2.2 New Functionality (191 cases) Categories.
• New classes/methods. (61.29%) New classes/methods are in-
troduced as the entries for new implementations which can be
called by the existing APIs.

• Additional branches. (22.58%) New implementations/handlers
are optionally accessible via new if or switch branches.
• Additional parameters. (9.68%) New parameters are added to
existing internal methods to control or optimize existing func-
tionalities by providing more options.
• Additional fields. (6.45%) New fields of returned objects are
added with corresponding data and control dependencies. They
are used to provide additional information loaded in the fields.
The new functionality cases were only considered new if the

original functionalities were intact. Thus, the New Functionality
cases were mostly additive changes. These patterns will be sum-
marized to heuristics based on PDG and CFG. The commit IDs are
provided on our website [13].

4 METHODOLOGY
According to Gunter et al. [38], since the change of semantics can
be interpreted to infer the change of output which usually leads
to the breaking issues, Sembid is designed to infer the SemB by
measuring semantic diff.

Sembid aims at detecting SemB issues over Patch and Minor up-
grades based on APIs. As shown in Figure 1, Sembid consists of
five major steps, (1) Group clusters from call graphs: Given the
API pairs, Sembid constructs the call graphs of them, from which
it groups the consecutive changed methods as clusters. (2) Derive
Dependencies Summaries: Sembid backward slices the output of
clusters to obtain inter-procedural dependency summaries of data/-
control/exception. (3) Match patterns for benign changes: we
heuristically summarized the patterns from Section 3.2 for Sembid
to identify the statements of benign changes. (4) Measure seman-
tic diff: Inter-procedural semantic graph pairs are constructed from
dependencies summaries. Semantic diff is measured by topological
similarity based on subgraph isomorphism by Weisfeiler-Lehman
(WL) algorithm. If changes in semantics are too large, the cluster
is considered to be affected by SemB. (5) Check the impact of
SemB: Sembid checks if the SemB of each cluster is triggerable as
well as if the breaking change can propagate back to API’s output.

4.1 Grouping Clusters from Call Graphs
Given the byte code, Sembid first identifies the APIs that are worth
checking by narrowing down the API candidates to those with
identical signatures only. Then, it constructs the call graphs for the
APIs to derive the subsequent method calls for further analysis.

4.1.1 Generating Call Graphs for Candidate APIs. Sembid
starts with identifying the set of API pairs that have no SynB. Specif-
ically, Acand = {⟨apiold ,apinew ⟩ | Siдapiold = Siдapinew } is the
API pair candidates. Note that the return type of Siдapi has to re-
main consistent, except it is a widening cast. For example, if the
return type of the old API is changed from lonд to int in the new
API, the compilation would succeed after the upgrade. To obtain
Acand , Soot [60] was leveraged to collect API sets Aold and Anew
from class files of the old and the new libraries respectively.

Based on Acand , Sembid generates call graphs of each API with
Soot by the Spark algorithm [24]. For method bodies, Soot trans-
forms them into Jimple [4], a typed IR. The size of the call graph
can grow exponentially based on the depth, which results in the
inefficiency of the analysis of methods at deep levels. According to

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Fig. 1. Overview of Sembid

[57], the semantics of a method decays along the calling chain to be
negligible at the depth of around 10 stacks. Thus, conservatively, we
set the depth of the call graph x ∈ [1, 15] to boost the performance.

4.1.2 Grouping Clusters. As discussed in Section 3.1.2, clusters
are constructed by grouping methods that have signature or body
changes to mitigate the inter-method refactoring. Given a pair of
call graphs CGold and CGnew , in terms of the method’s signature
and body code, methods from both call graphs can be classified as
changed methodsMchanдed and unchanged methodsMunchanдed .
According to [61], inter-method refactoring involves methods that
are directly connected in a call graph. For instance, “Extract method”
creates a new method to replace the removed block. Thus, Sembid
groups as many directly connected (consecutive) methods as possi-
ble of Mchanдed as clusters. The clusters are analyzed and sliced
altogether as a whole to neutralize the inter-method refactoring.

4.2 Deriving Dependencies Summaries
For a cluster pair ⟨c, c ′⟩, Sembid relies on three kinds of inter-
procedural semantic summaries to model the relationship between
the input and output, which are Data Dependency Summaries
(DDS), Control Dependency Summaries (CDS), and Exception Sum-
maries (ES). Each dependency in the summary is embodied as a
Static Single Assignment (SSA) statement from the IR. These sum-
maries are used to capture the factors that potentially change the
output regarding the data calculation, control logic, and exception
handling. Listing 1 will be used as a running example.

The DDS and CDS of the output of clusters are extracted based
on backward slicing of the output in the Program Dependence
Graph (PDG) recursively. We first define cluster c = {mroot ,mj |
j = 0, ...,n} wherem is the method, and n is the number of methods,
excluding the root. The ES is a set summarised from the unhandled
exception exits of all methods within a cluster. Next, we define
the output of a cluster as the non-local variables that are written
after the execution of the cluster. The output can be in three forms:
(1) Variables returned by mroot ; (2) Class fields written in case
mroot returns void; (3) Exceptions thrown, as exception variable
is a special non-local variable to be handled out of c . In general,
the output is considered as the impact that the c imposes on the
global environment. The semantic dependency summaries are ro-
bust against syntactic intra-method refactoring, such as moving,
renaming, pushing down/pulling up, and splitting/merging local

variables, because Sembid directly models the relationship among
non-local variables without the interference of local variables.

4.2.1 Data Dependencies Summary. DDS is used to model the
relationship between the input and output as an aspect of data
calculation. Based on PDG, output statements are backward sliced
to derive data dependence statements. If any non-local variable,
such as parameter, is met, Sembid associates all statements met
before with the non-local variable to check the triggerability later.
Since the operands in SSA are prone to renaming, the operands are
normalized as var, parameter, and field based on their roles.

To support inter-procedural analysis, when Sembid meets a
called method m0 within the cluster during the slicing, it dives
intom0. Inm0, the operations saving is executed with the same
pattern as the root methodmroot . The only exception is that param-
eters ofm0 are mapped to the local variables inmroot instead of
non-local variables. If Sembid meets a method not included in the
cluster, which are either unchanged methods or methods from other
libraries, such as Java built-in classes, Sembid does not dive into it,
as analysis of them does not make difference on SemB detection.

4.2.2 Control Dependency Summary. CDS describes the con-
trolling semantics of the cluster, which determines the execution
branching. Towards a pair ⟨c, c ′⟩, CDS is derived by backward slic-
ing the output ofmroot with Control Dependency edges recursively.
Boolean conditions, e.g. if, directly and indirectly, lead to the output
will be collected. The inter-procedural analysis is conducted in the
same manner as DDS. To normalize the conditions against syntactic
changes, e.g. refactoring, Sembid calculates the Disjunctive Boolean
Summary (DBS) which is a joint logic symbol of the original logic
and the reversed one. For instance, a > 0’s DBS is ⟨> 0 |<= 0⟩.
Moreover, the DDS of variables used in the conditions is extracted
to capture the possible changes in variable values. These Data de-
pendency statements are associated with the conditions.

Recall the motivating example, the DDS and CDS are extracted
based on the output (L7 handler) slicing in Figure 2. These sum-
maries on the left are organized based on the control flows fromCFG.
Since only L11-L12 introduces new conditions, the CDS changes,
but DDS does not change. The switch from if (L2) to while (L5)
changes control flow without changing CDS or DDS. Hence, It is
necessary to include CFG in the analysis to capture all possible
semantic changes.

4.2.3 Exception Summary. According to the study from [50],
unexpected exception throwing is a common SemB issue, which

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu

Fig. 2. (a) Data & Control Dependencies Summaries in the
semantic graph of Motivating Example (b) Example of sub-
graph comparison of Node var==1 at height 1 and 2

is caused by un-handled new exceptions. Thus, it is necessary to
check if the exceptions are consistent during the upgrade for the
cluster. Because exceptions have no data dependencies, but only
control dependencies, the exceptions extracted from the cluster are
associated with the corresponding conditions from the CDS.

4.3 Matching Patterns for Benign Changes
In order to match benign changes in PDG and CFG. We first sum-
marize semantic patterns from the syntactic source code patterns
from Section 3.2. Given a cluster c , statements of benign changes
are identified and collected to a set Scben . According to Campos
et al. [31] and Pan et al. [53], there were 9 categories of bug fixes
patterns in Java. We further generalize them into 5, namely, from
major to minor, controlling conditions (CC), field, method call, vari-
able assignment, and try/catch. Also, we found the patterns of new
functionality rely on the first 3 objects. Since these categories that
can be identified from CFG/PDG based on IR could cover most cases
of benign changes, heuristics to identify the overall benign changes
were designed based on these categories.

• CC Adjustment: The benign changes adjust the conditions
for legitimate use. If the subsequent implementations along the
branch are not changed, the change is considered benign. Steps:
(1) Get changed conditions from two lists of old and new condi-
tions of CDS from Section 4.2.2. (2) Locate subsequent blocks of
changed conditions by CFG and compare the DDS statements
in those blocks to check if changed conditions lead to the same
implementation. (4) If so, add the changed conditions as well as
the backward sliced data dependency statements of them to Sben ,
because they all contribute to the adjustment.

• CC and Try/Catch Extra Handling: Because the old imple-
mentation is not sufficient to cover all legitimate input, develop-
ers may add extra handling to the original to expand the input
domain. The extra handling can either fix a corner case or intro-
duce new functionality to support a new option. But in either
way, they are reflected as extra branches in exceptional CFG.
Steps: (1) Locate only the new conditions in CDS and new Catch
in ES. (2) Derive statements in two subsequent blocks of boolean
conditions and Catch by CFG. (3) Since the extra handling would
not tamper with the original implementation, one of the blocks
should remain identical and the other one is new. Compare the
blocks with the old implementation to get the new ones. (4) Add
these new conditions/exceptions, statements from new blocks,
and their data dependency statements to Sben .
• Field: Augmented Output: In Java, the instance as output is
augmented to accommodate more fields. Another case is non-
static methods returning void set more fields as the output. steps:
(1) Identify new fields by comparing the output’s old and new
field lists by name and type. Note that Sembid only captures the
newly added fields, which means the old fields should remain
the same. If the number of output fields does not increase in
the new version, it is not considered augmented, but possible
breaking changes, as the old implementation could rely on the
types of original fields. (2) Backward walk through the def-use
chains of the fields recursively to add relevant statements to Sben .
Backward slicing does not work in this case, because it returns
dependencies of the output instance, instead of specific fields.
Hence, fine-grained slicing at the field level is applied.
• Method Call: Similar Substitution: Classes or methods are
substituted with similar analogies to enforce the original rules.
In this case, the semantics of the substituted component is re-
flected by its role in the context. For example, if one statement
of invocation is replaced, but the contextual statements remain
the same, the role of the substitution is not changed. Sembid cap-
tures this semantics by using a neighbor-preserving algorithm
in Section 4.4, which considers two nodes are identical if all 1st
neighboring nodes remain the same.
• Variable Assignment Revision: Some variables are assigned
different values or new assignments are included. If the variable is
local and not a data dependency of the output, it is likely to be an
auxiliary variable that controls correct behaviors without directly
tampering with the value of output. It is identified by (1) Obtain
data dependency statements of conditions fromCDS. (2) Compare
them based on each condition to get new statements, and check
if they belong to new variables. (3) If so, add them to Sben . If the
output or data dependency of output is assigned different values,
we do not explicitly classify them to Sben , because it is likely to
introduce breaking issues by yielding abnormal output.

Theoretically, benign changes should be identified and ruled
out to avoid false positives. However, the identification cannot be
perfectly accurate and they sometimes still cause SemB, such as
the regression issue, because either developers fail to anticipate
the breaking or the downstream projects use the API illegitimately.
Thus, Sembid fuzzily measures the semantic diff to determine the
SemBwith the de-emphasized benign changes instead of completely

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

ignoring them. However, if the accumulated semantics is changed
greatly, it is still considered SemB.

4.4 Measuring Semantic Diff
Tomeasure the semantic diff for a cluster pair, Sembid constructs an
inter-procedural semantic graph as Figure 2 by connecting Excep-
tion/Data/Control Dependencies Summaries with execution paths
from CFG. The semantic graph preserves the execution logic among
relevant dependency statements to model the behaviors of non-
local variables of clusters. Sembid infers the extent of semantic
change by calculating the topological similarity of semantic graphs
by subgraph matching algorithm based on Weisfeiler-Lehman (WL)
graph kernel [58] with weighted statements of Sben . If the final
value is above a threshold, the cluster is affected by SemB.

Here are the reasons for the adoption of the WL graph kernel.
WL graph kernel can convert the original graph to a sequence of
substructures defined as kernels that sort and compress topolog-
ical and labeling information of adjacent nodes. The kernel pairs
preserving the neighboring semantics can be used to calculate the
semantic similarity based on the number of matched kernels. Be-
sides, the runtime scales linearly in the number of edges better
than other kernels, such as Random-Walk or Shortest-Path [58].
WL graph kernels are designed for directed discrete large graphs
which suit the scenario of semantic graphs.

Inspired by the graph matching algorithm of PDG in CCGraph
[71], Sembid relies on the subgraph isomorphism based on h iter-
ations of WL graph kernel calculation to determine the semantic
diff between semantic graphs ⟨G,G ′⟩. CCGraph targets detecting
code clone only based on PDG, while the semantics from PDG is
not sufficient for SemB detection. For example, the crucial control
flow change in Listing 1 is not reflected in PDG. Thus, Sembid
measures the semantic diff between sliced statements connected
by control flows for better semantic representation. Also, Sembid
further de-emphasizes the benign changes to align with SemVer
rules. The procedures are described below in Algorithm 1:
• Labels of nodes in graphs are hashed as the initial values.
• In ith iteration of WL algorithm [58], labels of each node as well
as its neighbors in i hops are compressed into a new label by
local sensitive hashing according to WL algorithm.
• In ith iteration, if labels of two nodes are identical, the subgraphs
of the node pair are considered as isomorphic at height i.
• After all iterations, the number of non-identical node pairs multi-
plies with a deteriorating weightw and benign penalty p per pair
as the final graph kernel value K . K is normalized to compare
against the threshold T . If K > T , the cluster pair has SemB. K is
calculated as

K =
∑h
i=1 ⟨l (n) |l (n),l (n′)⟩∗(h−i+1)/h∗sizeof (Sben)/sizeof (G′)

min(sizeof (G),sizeof (G′))
Same as [71], deteriorating weightw is calculated as (h− i + 1)/h

for ith iteration, because the closer the neighbors of node n are,
the more they affect the node n. The benign change penalty p is
calculated as sizeo f (Sben)/sizeo f (G ′) to dynamically adapt to the
size of G ′. Since lower T lowers the precision of Sembid, while
higher T lowers the recall, the T is empirically set as 0.1 to balance
the precision and recall. In Figure 2(b), the node var==1’s neighbors
are converted to subgraphs and then compressed by WL algorithm

Fig. 3. Triggerabitliy and Propagatability Analysis

to form a label at height 1. Height 2 is formed in the same way.
Evidently, none of the label pairs of node var==1’ is identical.

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

from CFG. The semantic graph preserves the execution logic among
relevant dependency statements to model the behaviors of non-
local variables of clusters. Sembid infers the extent of semantic
change by calculating the topological similarity of semantic graphs
by subgraph matching algorithm based on Weisfeiler-Lehman (WL)
graph kernel [58] with weighted statements of 𝑆𝑏𝑒𝑛 . If the final
value is above a threshold, the cluster is affected by SemB.

Here are the reasons for the adoption of the WL graph kernel.
WL graph kernel can convert the original graph to a sequence of
substructures defined as kernels that sort and compress topolog-
ical and labeling information of adjacent nodes. The kernel pairs
preserving the neighboring semantics can be used to calculate the
semantic similarity based on the number of matched kernels. Be-
sides, the runtime scales linearly in the number of edges better
than other kernels, such as Random-Walk or Shortest-Path [58].
WL graph kernels are designed for directed discrete large graphs
which suit the scenario of semantic graphs.

Inspired by the graph matching algorithm of PDG in CCGraph
[71], Sembid relies on the subgraph isomorphism based on h iter-
ations of WL graph kernel calculation to determine the semantic
diff between semantic graphs ⟨𝐺,𝐺 ′⟩. CCGraph targets detecting
code clone only based on PDG, while the semantics from PDG is
not sufficient for SemB detection. For example, the crucial control
flow change in Listing 1 is not reflected in PDG. Thus, Sembid
measures the semantic diff between sliced statements connected
by control flows for better semantic representation. Also, Sembid
further de-emphasizes the benign changes to align with SemVer
rules. The procedures are described below in Algorithm 1:
• Labels of nodes in graphs are hashed as the initial values.
• In 𝑖𝑡ℎ iteration of WL algorithm [58], labels of each node as well
as its neighbors in i hops are compressed into a new label by
local sensitive hashing according to WL algorithm.
• In 𝑖𝑡ℎ iteration, if labels of two nodes are identical, the subgraphs
of the node pair are considered as isomorphic at height i.
• After all iterations, the number of non-identical node pairs multi-
plies with a deteriorating weight𝑤 and benign penalty 𝑝 per pair
as the final graph kernel value 𝐾 . 𝐾 is normalized to compare
against the threshold 𝑇 . If 𝐾 > 𝑇 , the cluster pair has SemB. 𝐾 is
calculated as

𝐾 =

∑ℎ
𝑖=1 ⟨𝑙 (𝑛) |𝑙 (𝑛)≠𝑙 (𝑛′) ⟩∗(ℎ−𝑖+1)/ℎ∗𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑆𝑏𝑒𝑛)/𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐺 ′)

𝑚𝑖𝑛 (𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐺),𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐺 ′))
Same as [71], deteriorating weight𝑤 is calculated as (ℎ− 𝑖 +1)/ℎ

for 𝑖𝑡ℎ iteration, because the closer the neighbors of node 𝑛 are,
the more they affect the node 𝑛. The benign change penalty 𝑝 is
calculated as 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑆𝑏𝑒𝑛)/𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐺 ′) to dynamically adapt to the
size of 𝐺 ′. Since lower 𝑇 lowers the precision of Sembid, while
higher 𝑇 lowers the recall, the 𝑇 is empirically set as 0.1 to balance
the precision and recall. In Figure 2(b), the node var==1’s neighbors
are converted to subgraphs and then compressed by WL algorithm
to form a label at height 1. Height 2 is formed in the same way.
Evidently, none of the label pairs of node var==1’ is identical.

4.5 Checking Impact of Semantic Breaking
This procedure only proceeds when a SemB cluster is caught in the
previous step. Only if both triggerability and propagatability are
feasible, the SemB cluster is considered a threat to the API.

Algorithm 1: Algorithm of Measuring Semantic Diff
Input: ⟨𝑐, 𝑐′ ⟩: clusters pair with nodes 𝑛, label 𝑙 (𝑛) . ℎ: iteration number of

WL algorithm.𝑇 : threshold, 𝑤𝑖 : deteriorating weight at 𝑖𝑡ℎ , 𝑝 : benign
change penalty.

Output: 𝑅: Result of existence of SemB in ⟨𝑐, 𝑐′ ⟩
1 foreach 𝑖𝑡ℎ iteration in ℎ do
2 foreach node 𝑛 in cluster 𝑐 do
3 𝑠𝑔 (𝑛) ←𝑊𝐿𝐺𝑒𝑛𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ (𝑛,𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑛, 𝑖𝑡ℎ))
4 𝐿 (𝑛) ← ∑ (𝑙 (𝑛) |𝑛 ∈ 𝑠𝑔 (𝑛))
5 𝐿 (𝑛) ← 𝑠𝑜𝑟𝑡 (𝐿 (𝑛))
6 𝑙 (𝑛) ← 𝑙 (𝑛) + 𝐿 (𝑛)
7 𝑙 (𝑛) ←𝑊𝐿𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑙 (𝑛))
8 𝑤𝑖 ← (ℎ − 𝑖 + 1)/ℎ
9 𝑘𝑖 ← 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑙 (𝑛) ≠ 𝑙 (𝑛′)) ∗ 𝑤𝑖 ∗ 𝑝

10 𝑘 ← ∑
𝑘𝑖/𝑚𝑖𝑛 (𝑠𝑖𝑧𝑒𝑂𝑓 (𝑐, 𝑐′))

11 if 𝑘 > 𝑇 then
12 𝑅 ← 1
13 return 𝑅

Fig. 3. Triggerabitliy and Propagatability Analysis

4.5.1 Verifying Triggerability. Triggerability defines if SemB
can be triggered by old input. In Section 4.2, during the backward
slicing, input is associated with relevant statements. If the state-
ments are caught as the SemB changes, the associated input would
be checked, including parameters and fields. If the problematic in-
put is introduced in the new version, the SemB cannot be triggered,
because the old implementation cannot access the new input.

4.5.2 Verifying Propagatability. Propagatability determines if
the SemB output can propagate from the cluster 𝑐 = {𝑚𝑟𝑜𝑜𝑡 ,𝑚 𝑗 |
𝑗 = 0, ..., 𝑛} along call paths to API to affect users. Since SemB is
introduced in the new version, Sembid only verifies the propagata-
bility in the call graph of the new version. Sembid uses JGraphT
[49] serving as the graph infrastructure which first derives all call
paths by Dijkstra Algorithm [14] from the API to the 𝑚𝑟𝑜𝑜𝑡 as
𝑃 = {𝑝𝑎𝑡ℎ𝑖 | 𝑖 = 0, ..., 𝑛}. Second, For each call path, Sembid cal-
culates PDG for every method along the call path to verify if the
inter-procedural dependency chain is feasible along every PDG
from𝑚𝑟𝑜𝑜𝑡 to API’s entry method. Finally, propagatability 𝑃𝑔 is
obtained by 𝑖 𝑓 𝑓 ∃𝑝𝑎𝑡ℎ ∈ 𝑃,𝑑𝑒𝑝𝐶ℎ𝑎𝑖𝑛(𝑝𝑎𝑡ℎ) == 𝑇𝑟𝑢𝑒, 𝑃𝑔 = 𝑇𝑟𝑢𝑒 .

For example, in Figure 3, cluster 1’s output is propagatable to
the API’s output. The output of𝑚𝑟𝑜𝑜𝑡 of cluster 1, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐 has a
feasible dependency chain 𝑎 = 𝑏𝑎𝑟 () → 𝑎 = 𝑓 𝑜𝑜 () → 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏

as indicated by the green dotted line. Thus, the output of the API
indirectly depends on the SemB change in cluster 1. In contrast,

4.5 Checking Impact of Semantic Breaking
This procedure only proceeds when a SemB cluster is caught in the
previous step. Only if both triggerability and propagatability are
feasible, the SemB cluster is considered a threat to the API.

4.5.1 Verifying Triggerability. Triggerability defines if SemB
can be triggered by old input. In Section 4.2, during the backward
slicing, input is associated with relevant statements. If the state-
ments are caught as the SemB changes, the associated input would
be checked, including parameters and fields. If the problematic in-
put is introduced in the new version, the SemB cannot be triggered,
because the old implementation cannot access the new input.

4.5.2 Verifying Propagatability. Propagatability determines if
the SemB output can propagate from the cluster c = {mroot ,mj |
j = 0, ...,n} along call paths to API to affect users. Since SemB is
introduced in the new version, Sembid only verifies the propagata-
bility in the call graph of the new version. Sembid uses JGraphT
[49] serving as the graph infrastructure which first derives all call
paths by Dijkstra Algorithm [14] from the API to the mroot as
P = {pathi | i = 0, ...,n}. Second, For each call path, Sembid cal-
culates PDG for every method along the call path to verify if the

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu

inter-procedural dependency chain is feasible along every PDG
frommroot to API’s entry method. Finally, propagatability Pд is
obtained by i f f ∃path ∈ P ,depChain(path) == True, Pд = True .

For example, in Figure 3, cluster 1’s output is propagatable to
the API’s output. The output ofmroot of cluster 1, return c has a
feasible dependency chain a = bar () → a = f oo() → return b
as indicated by the green dotted line. Thus, the output of the API
indirectly depends on the SemB change in cluster 1. In contrast,
an example of an un-propagatable SemB change is cluster 2 which
yields debugging information not used as the API’s output.

5 EVALUATION
Sembid was implemented in 9.2K LOC based on Jimple IR of Soot
4.2.1 in Java. We aim at answering the following research questions:
RQ1: What is the accuracy of Sembid in terms of SemB detection?
RQ2: How is the effectiveness of Sembid against unit tests?
RQ3: How do top Java libraries comply with SemVer rules?

5.1 Evaluation Setup
5.1.1 For RQ1. To evaluate the accuracy of Sembid, we first con-
struct a high-quality ground truth dataset for the benchmark with
other API checking tools and the baseline.
Benchmark Dataset Collection. Since Sembid is designed to de-
tect SemB across Patch and Minor upgrades, we collected broken
API pairs of Patch andMinor upgrades from the 20most usedMaven
libraries. The steps are (1) We located Github repositories of those
libraries. (2) We conducted regression tests by running unit tests
from the old versions against the implementations in the new ver-
sions to detect SemB. (3) After ruling out the SynB, the failures
that caused AssertionError, unexpected exceptions, and crashes are
considered as SemB, because AssertionError means the program is
executed abnormally. Since Mostafa et al. [50] conducted the same
regression tests on some of the libraries before 2018, we extended
the dataset by extracting APIs from their testing logs in the same
steps. Eventually, we derived 308 API pairs with SemB from 77
version pairs. For the dataset of compatible API pairs aligning with
SemVer rules, we used the dataset from Section 3.1.2. 363 API pairs
with binary changes without SemB serve as the negative data set
of SemB detection.
Metrics. The outcomes of Sembid are categorized into (1) True
Positive (TP): APIs reported have SemB. (2) False Positive (FP): APIs
reported do not have SemB. (3) True Negative (TN): The API not
reported by Sembid has no SemB. (4) False Negative (FN): The API
not reported by Sembid actually has SemB. Precision, recall, and
F-measure are used as evaluation metrics.

5.1.2 For RQ2: We conducted another experiment to verify the
effectiveness of detecting SemB APIs over version pairs between
Sembid and the commonly used SemB detection solution, unit tests.
As the number of APIs of popular libraries is considerable (406, 826
APIs of 77 pairs), the efforts of manual ground truth checking would
be overwhelming. Hence, we selected the top 4 most used libraries
with 1 SemB Patch version pair each, as they are more likely to
have the best testing coverage. In total, 3, 846 APIs were collected.

5.1.3 For RQ3: All semantically successive version pairs pub-
lished in the last 20 years of 21 most used Java TPLs from the

Table 1: Benchmark Accuracy of SemB Detection based on
APIs

Tools TP FN Recall FP Precision F-measure

Sembid 278 30 90.26% 64 81.29% 85.54%
baseline 302 6 98.05% 363 45.41% 62.07%
revapi 30 278 9.74% 21 58.82% 16.71%
japicc 21 287 6.82% 14 60.00% 12.25%
japi-cker 14 294 4.55% 10 58.33% 8.44%
clirr 1 307 0.32% 0 100.00% 0.64%
sigTest 0 308 0.00% 0 N.A. N.A.

Maven repository [20] were collected for the large-scale analysis.
In total, 546 version pairs and 1, 629, 589 APIs were tested. To ana-
lyze the compliance of the SemVer rules, we classified them into
(1) Patch: 334 pairs; (2) Minor: 163 pairs; (3) Major: 49 pairs. The
versions collected were stable unless none was available.

5.2 RQ1: SemB Detection Accuracy
To evaluate the accuracy of Sembid against existing tools, we have
selected 5 Java API compatibility checking tools (i.e., revapi [22],
japicc [11], japi-checker [7], clirr [8], sigTest, [6]), which are com-
monly used in benchmarks [42] and industrial software, such as
Apache Httpclient [16]. Besides existing tools, we also implemented
a baseline tool that relies on the same call graph construction pro-
cedures as Sembid, but SemB is considered as positive if any binary
diff exists in any method called by APIs.

Table 1 presents the accuracy evaluation of Sembid and other
tools on the benchmark data set from Section 5.1. Sembid achieves
90.26% recall, 81.29% precision, and 85.54% F-measure. It is con-
cluded that Sembid outperformed other tools because these tools
could only detect SynB instead of the SemB. There were two rea-
sons why some tools could still have TP. First, tools, such as revapi,
not only evaluated the compatibility based on signatures but took
other features, such as method accessibility and abstraction into
account. Second, some of the tools only returned the incompatible
class names without method names. If any API signature from the
data set had the same class name as the returned class names, we
considered the SemB API was detected.
False Negative Cases Discussion.We manually examined the 30
false-negative cases and summarised 4 reasons why Sembid made
false decisions. A detailed name list is provided in [13].

• (46.67%, 14 cases) Secondary Output: It is the output embodied
as debugging messages, written files, and other auxiliary infor-
mation conveyed by the APIs. Unlike the primary output, the
secondary outputs are not global variables passed to the users’
programs, but the unit tests sometimes still include them by as-
sertion. Since, unlike the secondary output, users directly use the
primary one which could break downstream projects, Sembid
focuses on the primary output to cover the mainstream scenarios.
• (23.33%, 7 cases) Falsely Identified Benign Changes: The pat-
terns of these changes fall into the summarised benign changes.
However, no evidence suggested they are benign from commit
messages or documentation. Although de-emphasizing benign

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

changes is not perfect, it does improve the precision at the rela-
tively low cost of false negatives.
• (20.00%, 6 cases) Signature Reflection: The breaking was
caused by different signature reflections [18]. Sembid cannot
capture the behaviors that can only be triggered dynamically,
and thus can complement testing for a more comprehensive
detection.
• (10.00%, 3 cases) Subtle Changes: The changes were too sub-
tle to be detected by the semantic diff measuring, such as the
change of index number of an array, which may not always cause
changed output. Although the threshold may overlook some sub-
tle breaking changes, it reduces many more false positives.

False Positive Cases Discussion. 64 false-positive cases were
listed with 3 reasons why the results were incorrect.

• (53.13%, 34 cases) Large Accumulated Semantic Diff: Al-
though Sembid already assigned low weights to the benign
changes, multiple benign changes can still have a considerable
stacked impact on measuring semantic diff. Because benign
changes cannot be accurately identified and filtered out, we have
to trade off between the under-fitting and over-fitting by weight-
ing.
• (37.50%, 24 cases) Equivalent Re-implementation: The code
with the same functioning was re-implemented in another way in
the new version. One example is the Java feature evolution. Java
8 [17] introduced a feature, stream, for parallel aggregate opera-
tions. Although it can be used with forEach to work the similar
way as primitive for loop, they are written in totally different byte
code. Another example is the change from array.getElementAt(n)
to array.subString(n, n+1).get(0). Both of them return the same
element in the array, but they are implemented in different ways,
which resembles the Type 4 Code Clone problem that hardly has
efficient and effective solutions so far. Hence, Sembid fails to
identify the semantic equivalence between them at the current
abstraction level.
• (9.38%, 6 cases) Unhandled Exception: They were detected as
BBI APIs because the newly thrown exceptions are not correctly
handled in the new version. But they are actually handled by
the super-type exception catchers. Sembid checks the exception
handling by comparing the exception signatures of the thrown
and the catcher. If they are not the same or the catcher is not
a general exception, such as "Exception", the thrown exception
is considered not caught. In fact, if the thrown is an inherited
sub-type of the catcher with different signatures, the thrown can
still be caught. Sembid made such wrong decisions due to the
lack of knowledge of the exception inheritance hierarchy.

The baseline tool achieved high recall but low precision, which
failed to detect 6 cases of signature reflection due to its static basis.
All APIs from the compatible test set were false positives.

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

change of index number of an array, which may not always cause
changed output. Although the threshold may overlook some sub-
tle breaking changes, it reduces many more false positives.

False Positive Cases Discussion. 64 false-positive cases were
listed with 3 reasons why the results were incorrect.
• (53.13%, 34 cases)LargeAccumulated SemanticDiff: Although
Sembid already assigned low weights to the benign changes, mul-
tiple benign changes can still have a considerable stacked impact
on measuring semantic diff. Because benign changes cannot be
accurately identified and filtered out, we have to trade off be-
tween the under-fitting and over-fitting by weighting.
• (37.50%, 24 cases) Equivalent Re-implementation: The code
with the same functioning was re-implemented in another way in
the new version. One example is the Java feature evolution. Java
8 [17] introduced a feature, stream, for parallel aggregate opera-
tions. Although it can be used with forEach to work the similar
way as primitive for loop, they are written in totally different byte
code. Another example is the change from array.getElementAt(n)
to array.subString(n, n+1).get(0). Both of them return the same
element in the array, but they are implemented in different ways,
which resembles the Type 4 Code Clone problem that hardly has
efficient and effective solutions so far. Hence, Sembid fails to
identify the semantic equivalence between them at the current
abstraction level.
• (9.38%, 6 cases) Unhandled Exception: They were detected as
BBI APIs because the newly thrown exceptions are not correctly
handled in the new version. But they are actually handled by
the super-type exception catchers. Sembid checks the exception
handling by comparing the exception signatures of the thrown
and the catcher. If they are not the same or the catcher is not
a general exception, such as "Exception", the thrown exception
is considered not caught. In fact, if the thrown is an inherited
sub-type of the catcher with different signatures, the thrown can
still be caught. Sembid made such wrong decisions due to the
lack of knowledge of the exception inheritance hierarchy.
The baseline tool achieved high recall but low precision, which

failed to detect 6 cases of signature reflection due to its static basis.
All APIs from the compatible test set were false positives.

Conclusion of RQ1: Sembid outperformed other API compati-
bility checking tools and achieved 90.26% recall, 81.29% precision,
and 85.54% F-measure in terms of SemB API detection. Sembid
achieved much better precision than the baseline tool (45.41%),
which indicates that Sembid is able to effectively filter out the
false-positive changes.

5.3 RQ2: Effectiveness of Detecting SemB
against Unit Tests

As unit tests are widely used to detect SemB based on APIs, we
compared Sembid against unit tests regarding the number of de-
tected SemB APIs. A similar tool, DeBBI, was proposed by Chen
et al. [32] to detect SemB based on augmented unit tests, but it
requires manual analysis, and no public data or source code is avail-
able. Hence, DeBBI is not involved in the evaluation. Based on the
selected libraries from Section 5.1, we first obtained APIs that have

A
P

I p
er

ce
nt

ag
e

0%

25%

50%

75%

100
%

Unit test Sembid Ground truth

Untested/Unchanged Negative Positive

Fig. 4. Comparison between unit tests and Sembid over all
APIs during upgrades as well as the ground truth

binary change as set 𝐴𝑐ℎ𝑎𝑛𝑔𝑒𝑑 . Then, we derived all tested meth-
ods from the testing source code. Because developers would not
explicitly mention what methods or classes are tested, we made an
overestimation by assuming all public and instantiable classes used
in the tests along with their public methods are tested. Based on this
assumption, we processed the testing classes in the following man-
ner: (1) Irrelevant testing methods were filtered out according to the
rules of testing frameworks. For example, if a framework, Junit, was
used, methods annotated with @𝑏𝑒 𝑓 𝑜𝑟𝑒 , @𝑎𝑓 𝑡𝑒𝑟 , @𝑖𝑔𝑛𝑜𝑟𝑒 would
be ignored. 2) From the relevant testing methods, we constructed
call graphs for each of them, then directly called methods that meet
the aforementioned conditions were collected. (3) During running
the tests, the dynamic call graphs were calculated to derive the
dynamically called APIs. APIs collected are formed as a set 𝐴𝑡𝑒𝑠𝑡𝑒𝑑
to denote the changed APIs covered by tests.

In Figure 4, the results are illustrated. In total, 3, 846 APIs were
evaluated in 4 version pairs. The ground truth of them was manu-
ally confirmed. It is evident that from the first bar unit tests covered
averagely 16.61% of APIs, while the second bar indicates that Sem-
bid can cover 100% APIs and focus on detecting potential SemB
in 15.00% (577) APIs with binary changes. The unchanged APIs
are naturally compatible. Apart from the coverage of APIs, even
for APIs covered by unit tests, unit tests only uncovered 0.48% (16)
SemB APIs of all APIs. According to the ground truth denoted by
the third bar, unit tests failed to detect 79.46% (62/78) of SemB APIs,
but Sembid successfully covered 92.30% (72/78) of SemB APIs. Al-
though Sembid made some false alarms (21.73% = 20/92), generally
Sembid detected more SemB APIs than the unit tests with 4.5 times
more TP. However, Sembid as a static tool has its limit. As unit tests
can dynamically detect SemB in certain APIs with reflection, but
Sembid is not able to cover them statically.

Conclusion of RQ2: Over 4 version pairs, 3, 846 APIs in total,
Sembid detected 4.5 times more SemB APIs than unit tests (72
v.s. 16) and achieved better coverage of APIs (100% v.s. 16.61%).
Unit tests are able to detect 6 more SemB caused by dynamic
operations than Sembid. It indicates that Sembid can serve as
the complement of unit tests to detect more SemB for Patch and
Minor upgrades.

A
P

I p
er

ce
nt

ag
e

0%

25%

50%

75%

100
%

Unit test Sembid Ground truth

Untested/Unchanged Negative Positive

Fig. 4. Comparison between unit tests and Sembid over all
APIs during upgrades as well as the ground truth

5.3 RQ2: Effectiveness of Detecting SemB
against Unit Tests

As unit tests are widely used to detect SemB based on APIs, we
compared Sembid against unit tests regarding the number of de-
tected SemB APIs. A similar tool, DeBBI, was proposed by Chen
et al. [32] to detect SemB based on augmented unit tests, but it
requires manual analysis, and no public data or source code is avail-
able. Hence, DeBBI is not involved in the evaluation. Based on the
selected libraries from Section 5.1, we first obtained APIs that have
binary change as set Achanдed . Then, we derived all tested meth-
ods from the testing source code. Because developers would not
explicitly mention what methods or classes are tested, we made an
overestimation by assuming all public and instantiable classes used
in the tests along with their public methods are tested. Based on this
assumption, we processed the testing classes in the following man-
ner: (1) Irrelevant testing methods were filtered out according to the
rules of testing frameworks. For example, if a framework, Junit, was
used, methods annotated with @be f ore , @af ter , @iдnore would
be ignored. 2) From the relevant testing methods, we constructed
call graphs for each of them, then directly called methods that meet
the aforementioned conditions were collected. (3) During running
the tests, the dynamic call graphs were calculated to derive the
dynamically called APIs. APIs collected are formed as a set Atested
to denote the changed APIs covered by tests.

In Figure 4, the results are illustrated. In total, 3, 846 APIs were
evaluated in 4 version pairs. The ground truth of them was manu-
ally confirmed. It is evident that from the first bar unit tests covered
averagely 16.61% of APIs, while the second bar indicates that Sem-
bid can cover 100% APIs and focus on detecting potential SemB
in 15.00% (577) APIs with binary changes. The unchanged APIs
are naturally compatible. Apart from the coverage of APIs, even
for APIs covered by unit tests, unit tests only uncovered 0.48% (16)
SemB APIs of all APIs. According to the ground truth denoted by
the third bar, unit tests failed to detect 79.46% (62/78) of SemB APIs,
but Sembid successfully covered 92.30% (72/78) of SemB APIs. Al-
though Sembid made some false alarms (21.73% = 20/92), generally
Sembid detected more SemB APIs than the unit tests with 4.5 times
more TP. However, Sembid as a static tool has its limit. As unit tests

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu

Fig. 5. Proportions of version pairs affected by SemB and
SynB of Patch andMinor upgrades

can dynamically detect SemB in certain APIs with reflection, but
Sembid is not able to cover them statically.

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

change of index number of an array, which may not always cause
changed output. Although the threshold may overlook some sub-
tle breaking changes, it reduces many more false positives.

False Positive Cases Discussion. 64 false-positive cases were
listed with 3 reasons why the results were incorrect.
• (53.13%, 34 cases)LargeAccumulated SemanticDiff: Although
Sembid already assigned low weights to the benign changes, mul-
tiple benign changes can still have a considerable stacked impact
on measuring semantic diff. Because benign changes cannot be
accurately identified and filtered out, we have to trade off be-
tween the under-fitting and over-fitting by weighting.
• (37.50%, 24 cases) Equivalent Re-implementation: The code
with the same functioning was re-implemented in another way in
the new version. One example is the Java feature evolution. Java
8 [17] introduced a feature, stream, for parallel aggregate opera-
tions. Although it can be used with forEach to work the similar
way as primitive for loop, they are written in totally different byte
code. Another example is the change from array.getElementAt(n)
to array.subString(n, n+1).get(0). Both of them return the same
element in the array, but they are implemented in different ways,
which resembles the Type 4 Code Clone problem that hardly has
efficient and effective solutions so far. Hence, Sembid fails to
identify the semantic equivalence between them at the current
abstraction level.
• (9.38%, 6 cases) Unhandled Exception: They were detected as
BBI APIs because the newly thrown exceptions are not correctly
handled in the new version. But they are actually handled by
the super-type exception catchers. Sembid checks the exception
handling by comparing the exception signatures of the thrown
and the catcher. If they are not the same or the catcher is not
a general exception, such as "Exception", the thrown exception
is considered not caught. In fact, if the thrown is an inherited
sub-type of the catcher with different signatures, the thrown can
still be caught. Sembid made such wrong decisions due to the
lack of knowledge of the exception inheritance hierarchy.
The baseline tool achieved high recall but low precision, which

failed to detect 6 cases of signature reflection due to its static basis.
All APIs from the compatible test set were false positives.

Conclusion of RQ1: Sembid outperformed other API compati-
bility checking tools and achieved 90.26% recall, 81.29% precision,
and 85.54% F-measure in terms of SemB API detection. Sembid
achieved much better precision than the baseline tool (45.41%),
which indicates that Sembid is able to effectively filter out the
false-positive changes.

5.3 RQ2: Effectiveness of Detecting SemB
against Unit Tests

As unit tests are widely used to detect SemB based on APIs, we
compared Sembid against unit tests regarding the number of de-
tected SemB APIs. A similar tool, DeBBI, was proposed by Chen
et al. [32] to detect SemB based on augmented unit tests, but it
requires manual analysis, and no public data or source code is avail-
able. Hence, DeBBI is not involved in the evaluation. Based on the
selected libraries from Section 5.1, we first obtained APIs that have

A
P

I p
er

ce
nt

ag
e

0%

25%

50%

75%

100
%

Unit test Sembid Ground truth

Untested/Unchanged Negative Positive

Fig. 4. Comparison between unit tests and Sembid over all
APIs during upgrades as well as the ground truth

binary change as set 𝐴𝑐ℎ𝑎𝑛𝑔𝑒𝑑 . Then, we derived all tested meth-
ods from the testing source code. Because developers would not
explicitly mention what methods or classes are tested, we made an
overestimation by assuming all public and instantiable classes used
in the tests along with their public methods are tested. Based on this
assumption, we processed the testing classes in the following man-
ner: (1) Irrelevant testing methods were filtered out according to the
rules of testing frameworks. For example, if a framework, Junit, was
used, methods annotated with @𝑏𝑒 𝑓 𝑜𝑟𝑒 , @𝑎𝑓 𝑡𝑒𝑟 , @𝑖𝑔𝑛𝑜𝑟𝑒 would
be ignored. 2) From the relevant testing methods, we constructed
call graphs for each of them, then directly called methods that meet
the aforementioned conditions were collected. (3) During running
the tests, the dynamic call graphs were calculated to derive the
dynamically called APIs. APIs collected are formed as a set 𝐴𝑡𝑒𝑠𝑡𝑒𝑑
to denote the changed APIs covered by tests.

In Figure 4, the results are illustrated. In total, 3, 846 APIs were
evaluated in 4 version pairs. The ground truth of them was manu-
ally confirmed. It is evident that from the first bar unit tests covered
averagely 16.61% of APIs, while the second bar indicates that Sem-
bid can cover 100% APIs and focus on detecting potential SemB
in 15.00% (577) APIs with binary changes. The unchanged APIs
are naturally compatible. Apart from the coverage of APIs, even
for APIs covered by unit tests, unit tests only uncovered 0.48% (16)
SemB APIs of all APIs. According to the ground truth denoted by
the third bar, unit tests failed to detect 79.46% (62/78) of SemB APIs,
but Sembid successfully covered 92.30% (72/78) of SemB APIs. Al-
though Sembid made some false alarms (21.73% = 20/92), generally
Sembid detected more SemB APIs than the unit tests with 4.5 times
more TP. However, Sembid as a static tool has its limit. As unit tests
can dynamically detect SemB in certain APIs with reflection, but
Sembid is not able to cover them statically.

Conclusion of RQ2: Over 4 version pairs, 3, 846 APIs in total,
Sembid detected 4.5 times more SemB APIs than unit tests (72
v.s. 16) and achieved better coverage of APIs (100% v.s. 16.61%).
Unit tests are able to detect 6 more SemB caused by dynamic
operations than Sembid. It indicates that Sembid can serve as
the complement of unit tests to detect more SemB for Patch and
Minor upgrades.

5.4 RQ3: Study of Compliance with SemVer
To verify the compliance of SemVer rules in popular Java TPLs, we
evaluated the TPLs at library, version pair, and API levels respec-
tively. During the evaluation, both SynB and SemB are considered
as evidence of breaking (either SemB or SynB is a breaking). For
each version pair, the APIs affected by SynB and SemB as well as
the APIs with binary changes were collected. The detection of SynB
depends on the aforementioned API checking tools. The SynB APIs
are the union of them. The SemB was detected by Sembid. The
changed APIs were collected with Soot and BCEL.

Beginning with library and version pair levels, Figure 5 illus-
trated the proportion of SemB and SynB version pairs of 21 libraries.
If one breaking API was detected in a version pair, this version pair
was considered to be broken. Note that the SemB version pairs
were counted when the version pairs were free from SynB. In other
words, the sum of SemB proportion and SynB proportion is the
proportion of all broken version pairs. The left side is the Minor
upgrades, and the right side is the Patch upgrades. The numbers of
version pairs are annotated at the ends of bars. We found that
• Patch upgrades on average: 14/21(66.67%) libraries were sub-
ject to SynB for at least one version pair (1.27% − 81.25%). 19/21
(90.48%) libraries have at least one breaking version pair. It is
seen that SemVer rules are hardly applied to popular libraries.
However, the situation is getting better at the version pair level.
On average, SynB affects 10.45% of version pairs, but SemB af-
fects additional 23.35%, which makes 33.83% of version pairs
affected by either breaking. The SemB version pairs are over 2

P
ro

po
rti

on
 o

f B
ro

ke
n

A
P

Is

N
um

be
r o

f B
ro

ke
n

A
P

Is
 p

er
 u

pg
ra

de

0.00%

10.00%

20.00%

30.00%

40.00%

1

10

100

1000

Patch upgrades Minor upgrades Major upgrades

Syntactic Breaking Semantic Breaking Changed #Syntactic Breaking
#Semantic Breaking #Changed

Fig. 6. Average number and percentage of APIs over three
upgrades

times of SynB. It suggests that SemB detection is necessary in
Patch upgrades.
• Minor upgrades on average: All 20 libraries with minor up-
grades are affected by any breaking. It is observed that developers
are more likely to include breaking changes in Minor upgrades
than Patch. At the version pair level, SynB affects 37.42% of ver-
sion pairs, and SemB additionally affects 26.99%, which makes
64.42% of either breaking. Due to legacy reasons, libraries adopt
various version release strategies, and many libraries’ adminis-
trators allow breaking changes in Minor upgrades.
• Particular libraries: The performance varies tremendously
among libraries, because they adopt different, even opposite
version release strategies. Some libraries have a high ratio of
breaking version pairs, such as dubbo, netty, log4j, gson. Because
they have very few or 0 Minor/Major upgrades, they frequently
make Patch upgrades. They usually make Major upgrades cau-
tiously when the entire structure is rewritten, such that log4j
upgrades from 1.x to 2.x, httpclient 4.x-5.x. Then almost all normal
upgrades with breaking changes were accommodated in Patch
and Minor upgrades. If Minor upgrades are rare, Patch upgrades
would be mostly broken. For this kind of library, SemVer rules
are not properly applied so users have to identify the strategies
case by case. There are also some libraries adopting the opposed
strategy. For instance, guava made Major upgrades frequently
(13 times in 7 years) with a few Patch upgrades. Although guava
still has a few unexpected SemB, SemVer rules are basically well
applied, thus users can upgrade it by SemVer rules with ease.
Considering version release strategies vary greatly among li-

braries, SemVer rules are not generally followed by popular li-
braries. Apart from SynB, SemB is also prevalent over Patch and
Minor upgrades. For developers, Patch and Minor upgrades should
check SemB too before publishing to avoid breaking downstream
projects. For users, to avoid identifying version release strategies
of dependencies case by case, Sembid can be used on dependencies
to pre-check the breaking APIs before upgrading along with SynB
checking tools.

The SemB and SynB proportions at the API level are illustrated in
Figure 6, Changed denotes the number of APIs with binary changes.
It is observed that, for SemB, Sembid significantly filtered out non-
breaking APIs from Changed APIs. The SynB APIs were way fewer

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

than SemB, which means SynB checking is far from enough. More-
over, there were still 1.10% APIs affected by the SemB in patch
upgrades and 4.06% in minor upgrades.

Since these libraries were dependencies of over 110k artifacts
(libraries) in the Maven ecosystem, the unexposed SemB APIs could
unexpectedly detriment the functionalities of those artifacts.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu

Fig. 5. Proportions of version pairs affected by SemB and
SynB of Patch andMinor upgrades

5.4 RQ3: Study of Compliance with SemVer
To verify the compliance of SemVer rules in popular Java TPLs, we
evaluated the TPLs at library, version pair, and API levels respec-
tively. During the evaluation, both SynB and SemB are considered
as evidence of breaking (either SemB or SynB is a breaking). For
each version pair, the APIs affected by SynB and SemB as well as
the APIs with binary changes were collected. The detection of SynB
depends on the aforementioned API checking tools. The SynB APIs
are the union of them. The SemB was detected by Sembid. The
changed APIs were collected with Soot and BCEL.

Beginning with library and version pair levels, Figure 5 illus-
trated the proportion of SemB and SynB version pairs of 21 libraries.
If one breaking API was detected in a version pair, this version pair
was considered to be broken. Note that the SemB version pairs
were counted when the version pairs were free from SynB. In other
words, the sum of SemB proportion and SynB proportion is the
proportion of all broken version pairs. The left side is the Minor
upgrades, and the right side is the Patch upgrades. The numbers of
version pairs are annotated at the ends of bars. We found that
• Patch upgrades on average: 14/21(66.67%) libraries were sub-
ject to SynB for at least one version pair (1.27% − 81.25%). 19/21
(90.48%) libraries have at least one breaking version pair. It is
seen that SemVer rules are hardly applied to popular libraries.
However, the situation is getting better at the version pair level.
On average, SynB affects 10.45% of version pairs, but SemB af-
fects additional 23.35%, which makes 33.83% of version pairs
affected by either breaking. The SemB version pairs are over 2
times of SynB. It suggests that SemB detection is necessary in
Patch upgrades.
• Minor upgrades on average: All 20 libraries with minor up-
grades are affected by any breaking. It is observed that developers
are more likely to include breaking changes in Minor upgrades
than Patch. At the version pair level, SynB affects 37.42% of ver-
sion pairs, and SemB additionally affects 26.99%, which makes
64.42% of either breaking. Due to legacy reasons, libraries adopt
various version release strategies, and many libraries’ adminis-
trators allow breaking changes in Minor upgrades.
• Particular libraries: The performance varies tremendously
among libraries, because they adopt different, even opposite

P
ro

po
rti

on
 o

f B
ro

ke
n

A
P

Is

N
um

be
r o

f B
ro

ke
n

A
P

Is
 p

er
 u

pg
ra

de

0.00%

10.00%

20.00%

30.00%

40.00%

1

10

100

1000

Patch upgrades Minor upgrades Major upgrades

Syntactic Breaking Semantic Breaking Changed #Syntactic Breaking
#Semantic Breaking #Changed

Fig. 6. Average number and percentage of APIs over three
upgrades

version release strategies. Some libraries have a high ratio of
breaking version pairs, such as dubbo, netty, log4j, gson. Because
they have very few or 0 Minor/Major upgrades, they frequently
make Patch upgrades. They usually make Major upgrades cau-
tiously when the entire structure is rewritten, such that log4j
upgrades from 1.x to 2.x, httpclient 4.x-5.x. Then almost all normal
upgrades with breaking changes were accommodated in Patch
and Minor upgrades. If Minor upgrades are rare, Patch upgrades
would be mostly broken. For this kind of library, SemVer rules
are not properly applied so users have to identify the strategies
case by case. There are also some libraries adopting the opposed
strategy. For instance, guava made Major upgrades frequently
(13 times in 7 years) with a few Patch upgrades. Although guava
still has a few unexpected SemB, SemVer rules are basically well
applied, thus users can upgrade it by SemVer rules with ease.
Considering version release strategies vary greatly among li-

braries, SemVer rules are not generally followed by popular li-
braries. Apart from SynB, SemB is also prevalent over Patch and
Minor upgrades. For developers, Patch and Minor upgrades should
check SemB too before publishing to avoid breaking downstream
projects. For users, to avoid identifying version release strategies
of dependencies case by case, Sembid can be used on dependencies
to pre-check the breaking APIs before upgrading along with SynB
checking tools.

The SemB and SynB proportions at the API level are illustrated in
Figure 6, Changed denotes the number of APIs with binary changes.
It is observed that, for SemB, Sembid significantly filtered out non-
breaking APIs from Changed APIs. The SynB APIs were way fewer
than SemB, which means SynB checking is far from enough. More-
over, there were still 1.10% APIs affected by the SemB in patch
upgrades and 4.06% in minor upgrades.

Since these libraries were dependencies of over 110k artifacts
(libraries) in the Maven ecosystem, the unexposed SemB APIs could
unexpectedly detriment the functionalities of those artifacts.
Conclusion of RQ3: From the experiment with 1, 629, 589 APIs
in 546 version pairs, 1.10% of APIs from Patch and 4.06% of APIs
from Minor upgrades were affected by SemB. They are 2-4 times
more than SynB APIs (0.38% and 1.04%). In terms of the 497 Patch
and Minor version pairs, Patch upgrades have 33.83% breaking
pairs, and Minor upgrades have 64.42% breaking pairs because
version release strategies adopted by libraries vary greatly.

6 THREATS TO VALIDITY
The primary threat is that benign behavior filtering cannot ideally
reflect the real intention of the developers, because the rules to
filter out harmless behaviors were made based on the empirical
summary. The commit intention classification technology can be
used to facilitate the accuracy of benign change identification, but
they would introduce heavy procedures, such as Machine Learning
models, which handicap the scalable and efficient deployment.

Another threat is the scope of API. We took public methods of
instantiable classes as APIs which are a superset of client-used
APIs. However, since Java has no built-in indicator to mark exposed
APIs, it is hard to accurately locate the actually used APIs. Taking
advantage of usage data of TPL methods is plausible, but it is still
not accurate.

7 RELATEDWORK

7.1 Study of Semantic Versioning Compliance
Many research works [26, 33, 44, 47, 52, 54, 55] have studied the
compliance of SemVer since its release. Raemaekers et al. [54, 55]
found around 1/3 of all releases introduce at least one breaking
change in seven years release history of Maven Central Repository.
Decan et al. [33] studied 4 ecosystems (Cargo, NPM, Packagist,
and Rubygems) to understand to what extent developers rely on
SemVer to determine dependency constraints and found situations
varying greatly among them. Ochoa et al. [52] revealed that 83.4%
of upgrades of Maven comply with SemVer rules, andmost breaking
changes do not affect clients with only 7.9% of clients affected. The
works drew conclusions based on signature-based incompatibility
instead of SemB, which is not complete. Thus, Sembid is required
to provide a more comprehensive analysis of the disobeying of
SemVer by including SemB into the picture.

7.2 API Compatibility Checking
Only a limited number of research works [32, 50] regarding SemB of
Java programwere published in recent years. Mostafa et al. [50] con-
ducted an empirical study on behavioral incompatibility phenom-
ena in popular Java libraries and analyzed published issues from
Jira. DeBBI [32] used cross-project testing to amplify the testing
coverage to detect Behavioral Incompatibility. Their implementa-
tions relied on unit tests, thus subject to coverage. But Sembid relies

on static analysis so that Sembid can conduct a more comprehen-
sive analysis. Towards analyzing or detecting the signature-based
API compatibility issues of Maven or Android programs, massive
empirical studies [2, 34, 41–43, 62, 67, 68] have been conducted.
RAPID [68] detects the status of incompatible APIs in the Android
ecosystem. Huang et al. [41] studied callback compatibility issues
of Android and developed a tool based on CFG to detect such issues.
Jezek et al. [42] evaluated 9 commonly used syntactical incompati-
ble API detection tools. Apidiff [30] determined the incompatibility
at the name level of methods used in the target library. CiD [46]
tried to alert the users by modeling the life cycle of APIs used in
specific versions, while ACRYL [56] was a complementary method
for CiD based on an alternative data-driven approach . The studies
and detection tools based on the signature of APIs did not entail
the semantics, thus, they cannot be used to detect SemB APIs like
Sembid.

7.3 Software Evolution Studies
Many works [27–29, 35, 36, 39, 40, 48, 51, 64–66] were dedicated to
studying the evolution of software across platforms. Dig et al. [35]
discovered that 80% of breaking changes belonged to refactoring
over the evolution. Mcdonne et al. [48] discovered that the adoption
of API ismuch slower than theAPI evolution. Researchers of [28, 36]
summarized the best practice for developing web application APIs.
Bavota et al. [27] revealed the impact of dependencies upgrade
based on 14 years of published maven projects. Wu et al. [64–66]
found that APIs in frameworks are more susceptible to the missing
method or class. These studies established the foundations of API
compatibility. With their contributions to the overall understanding
of API compatibility, we can locate and resolve the pain points of
API compatibility.

8 CONCLUSION
We proposed Sembid to statically detect SemB based on APIs during
Patch and Minor upgrades to enhance the compliance of SemVer
rules. Experimental results demonstrated that Sembid achieved
90.26% recall and 81.29% precision. Another experiment proves
that Sembid with larger coverage detected 4.5 times more APIs
than the commonly used solution, unit tests. Furthermore, a study
was conducted on the top 21 Java libraries for over 1.6 million APIs,
and 546 version pairs to evaluate the compliance with SemVer rules
at the library, version pair, and API levels, which revealed that
33.83% Patch upgrades and 64.42% Minor upgrades had at least one
API affected by any breaking. And on average, there were 2-4 times
more APIs affected by SemB issues than SynB issues.

ACKNOWLEDGMENTS
This research is partially supported by the National Research Foun-
dation, Singapore under its the AI Singapore Programme (AISG2-
RP-2020-019), the National Research Foundation, Prime Ministers
Office, Singapore under its National Cybersecurity R&D Program
(Award No. NRF2018NCR-NCR005-0001), NRF Investigatorship
NRF-NRFI06-2020-0001, the National Research Foundation through
its National Satellite of Excellence in Trustworthy Software Sys-
tems (NSOE-TSS) project under the National Cybersecurity R&D
(NCR) Grant award no. NRF2018NCR-NSOE003-0001, the Ministry

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu

of Education, Singapore under its Academic Research Fund Tier 2
(MOE-T2EP20120-0004) and Tier 3 (MOET32020-0004). Any opin-
ions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the views
of the Ministry of Education, Singapore.

REFERENCES
[1] 2004. Japitools. https://savannah.nongnu.org/projects/japitools/.
[2] 2007. Evolving Java-based APIs. https://wiki.eclipse.org/Evolving_Java-based_

APIs.
[3] 2008. Jour. http://jour.sourceforge.net/signature.html.
[4] 2012. Jimple. https://en.wikipedia.org/wiki/Soot_(software)#Jimple.
[5] 2013. Http-core motivating example. https://issues.apache.org/jira/browse/

HTTPCORE-367.
[6] 2014. sigtest. https://docs.oracle.com/javacomponents/sigtest-3-1/user-guide/

toc.htm.
[7] 2015. jchecker. https://github.com/trohovsky/japi-checker.
[8] 2016. clirr. https://www.mojohaus.org/clirr-maven-plugin/index.html.
[9] 2019. Apache Hadoop. https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-hdfs/HdfsDesign.html.
[10] 2019. Hadoop HDFS API breaking issue. https://issues.apache.org/jira/browse/

HDFS-14595.
[11] 2019. japi-compliance-checker. https://lvc.github.io/japi-compliance-checker/.
[12] 2021. BCEL. https://commons.apache.org/proper/commons-bcel.
[13] 2021. Data Set. https://sites.google.com/view/ase22semverdetection/homepage.
[14] 2021. Dijkstra Algorithm. https://en.wikipedia.org/wiki/Dijkstra_algorithm.
[15] 2021. Http-core. https://hc.apache.org/httpcomponents-core-4.4.x/index.html.
[16] 2021. Httpclient. https://hc.apache.org/httpcomponents-client-5.1.x/.
[17] 2021. Java 8. https://www.oracle.com/java/technologies/java8.html.
[18] 2021. Java Reflection. https://www.oracle.com/technical-resources/articles/java/

javareflection.html.
[19] 2021. Maven. https://maven.apache.org/.
[20] 2021. Maven Repository. https://mvnrepository.com/.
[21] 2021. Refactoring. https://en.wikipedia.org/wiki/Code_refactoring.
[22] 2021. revapi. https://revapi.org/revapi-site/main/index.html.
[23] 2021. Semantic Versioning. https://semver.org.
[24] 2021. Soot Spark Call Graph. https://soot-build.cs.uni-paderborn.de/public/

origin/develop/soot/soot-develop/options/soot_options.htm#phase_5_2.
[25] 2022. Java Polymorphism. https://docs.oracle.com/javase/tutorial/java/IandI/

polymorphism.html.
[26] Rabe Abdalkareem, Md Atique Reza Chowdhury, and Emad Shihab. 2022. A

Machine Learning Approach to Determine the Semantic Versioning Type of npm
Packages Releases. arXiv preprint arXiv:2204.05929 (2022).

[27] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2013. The evolution of project inter-dependencies in a
software ecosystem: The case of apache. In 2013 IEEE international conference on
software maintenance. IEEE, 280–289.

[28] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2015. How the apache community upgrades dependencies:
an evolutionary study. Empirical Software Engineering 20, 5 (2015), 1275–1317.

[29] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: cost negotiation and community values in three software
ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. 109–120.

[30] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff:
Detecting API breaking changes. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 507–511.

[31] Eduardo Cunha Campos and Marcelo de Almeida Maia. 2017. Common bug-
fix patterns: A large-scale observational study. In 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
404–413.

[32] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Tam-
ing behavioral backward incompatibilities via cross-project testing and analysis.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering. 112–124.

[33] Alexandre Decan and Tom Mens. 2019. What do package dependencies tell us
about semantic versioning? IEEE Transactions on Software Engineering 47, 6
(2019), 1226–1240.

[34] Jens Dietrich, Kamil Jezek, and Premek Brada. 2016. What Java developers know
about compatibility, and why this matters. Empirical Software Engineering 21, 3
(2016), 1371–1396.

[35] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.
Journal of software maintenance and evolution: Research and Practice 18, 2 (2006),
83–107.

[36] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API growing
pains: Stories from client developers and their code. In 2014 Software Evolu-
tion Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE). IEEE, 84–93.

[37] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 408–419.

[38] Carl A Gunter. 1992. Semantics of programming languages: structures and tech-
niques. MIT press.

[39] André Hora, Anne Etien, Nicolas Anquetil, Stéphane Ducasse, and Marco Tulio
Valente. 2014. Apievolutionminer: Keeping API evolution under control. In 2014
Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). IEEE, 420–424.

[40] André Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,
and Marco Tulio Valente. 2015. How do developers react to API evolution?
the pharo ecosystem case. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 251–260.

[41] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Under-
standing and detecting callback compatibility issues for Android applications. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 532–542.

[42] Kamil Jezek and Jens Dietrich. 2017. API Evolution and Compatibility: A Data
Corpus and Tool Evaluation. J. Object Technol. 16, 4 (2017), 2–1.

[43] Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break–an
empirical study. Information and Software Technology 65 (2015), 129–146.

[44] Patrick Lam, Jens Dietrich, and David J Pearce. 2020. Putting the semantics
into semantic versioning. In Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 157–179.

[45] Stanislav Levin and Amiram Yehudai. 2017. Boosting automatic commit classifica-
tion into maintenance activities by utilizing source code changes. In Proceedings
of the 13th International Conference on Predictive Models and Data Analytics in
Software Engineering. 97–106.

[46] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:
Automating the detection of API-related compatibility issues in Android apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–163.

[47] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
2022. Demystifying the vulnerability propagation and its evolution via depen-
dency trees in the npm ecosystem. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE).

[48] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of
API stability and adoption in the Android ecosystem. In 2013 IEEE International
Conference on Software Maintenance. IEEE, 70–79.

[49] Dimitrios Michail, Joris Kinable, Barak Naveh, and John V Sichi. 2020. Jgrapht—a
Java library for graph data structures and algorithms. ACM Transactions on
Mathematical Software (TOMS) 46, 2 (2020), 1–29.

[50] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience paper:
a study on behavioral backward incompatibilities of Java software libraries. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 215–225.

[51] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
and Yunwen Ye. 2002. Evolution patterns of open-source software systems and
communities. In Proceedings of the international workshop on Principles of software
evolution. 76–85.

[52] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. 2021. Break-
ing Bad? Semantic Versioning and Impact of Breaking Changes in Maven Central.
arXiv preprint arXiv:2110.07889 (2021).

[53] Kai Pan, Sunghun Kim, and E James Whitehead. 2009. Toward an understanding
of bug fix patterns. Empirical Software Engineering 14, 3 (2009), 286–315.

[54] Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2014. Semantic ver-
sioning versus breaking changes: A study of the maven repository. In 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation.
IEEE, 215–224.

[55] Steven Raemaekers, Arie vanDeursen, and Joost Visser. 2017. Semantic versioning
and impact of breaking changes in the Maven repository. Journal of Systems and
Software 129 (2017), 140–158.

[56] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Michele Lanza, and
Rocco Oliveto. 2019. Data-driven solutions to detect API compatibility issues in
Android: an empirical study. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 288–298.

[57] Adrian Schroter, Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. 2010.
Do stack traces help developers fix bugs?. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). IEEE, 118–121.

[58] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

https://savannah.nongnu.org/projects/japitools/
https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs
http://jour.sourceforge.net/signature.html
https://en.wikipedia.org/wiki/Soot_(software)#Jimple
https://issues.apache.org/jira/browse/HTTPCORE-367
https://issues.apache.org/jira/browse/HTTPCORE-367
https://docs.oracle.com/javacomponents/sigtest-3-1/user-guide/toc.htm
https://docs.oracle.com/javacomponents/sigtest-3-1/user-guide/toc.htm
https://github.com/trohovsky/japi-checker
https://www.mojohaus.org/clirr-maven-plugin/index.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://issues.apache.org/jira/browse/HDFS-14595
https://issues.apache.org/jira/browse/HDFS-14595
https://lvc.github.io/japi-compliance-checker/
https://commons.apache.org/proper/commons-bcel
https://sites.google.com/view/ase22semverdetection/homepage
https://en.wikipedia.org/wiki/Dijkstra_algorithm
https://hc.apache.org/httpcomponents-core-4.4.x/index.html
https://hc.apache.org/httpcomponents-client-5.1.x/
https://www.oracle.com/java/technologies/java8.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://maven.apache.org/
https://mvnrepository.com/
https://en.wikipedia.org/wiki/Code_refactoring
https://revapi.org/revapi-site/main/index.html
https://semver.org
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-develop/options/soot_options.htm#phase_5_2
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-develop/options/soot_options.htm#phase_5_2
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

Has My Release Disobeyed Semantic Versioning? Static Detection Based on Semantic Differencing ASE ’22, October 10–14, 2022, Rochester, MI, USA

[59] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong
Su. 2020. Why my app crashes understanding and benchmarking framework-
specific exceptions of android apps. IEEE Transactions on Software Engineering
(2020).

[60] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[61] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C Gall, and Alberto
Bacchelli. 2019. A large-scale empirical exploration on refactoring activities in
open source software projects. Science of Computer Programming 180 (2019),
1–15.

[62] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,
Yijian Wu, and Yang Liu. 2020. An empirical study of usages, updates and risks
of third-party libraries in Java projects. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 35–45.

[63] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[64] WeiWu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, andMiryung Kim. 2010. Aura:
a hybrid approach to identify framework evolution. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1. 325–334.

[65] Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2016. An exploratory study of api changes and usages based on apache
and eclipse ecosystems. Empirical Software Engineering 21, 6 (2016), 2366–2412.

[66] Wei Wu, Adrien Serveaux, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. 2015.
The impact of imperfect change rules on framework api evolution identification:
an empirical study. Empirical Software Engineering 20, 4 (2015), 1126–1158.

[67] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: A large-scale study. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 138–147.

[68] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, YangWang, Xiangyu Zhang,
Shuaishuai Cui, Geng Hong, Xiaohan Zhang, Min Yang, et al. 2020. How Android
developers handle evolution-induced API compatibility issues: a large-scale study.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 886–898.

[69] Xian Zhan, Lingling Fan, Sen Chen, Feng We, Tianming Liu, Xiapu Luo, and
Yang Liu. 2021. Atvhunter: Reliable version detection of third-party libraries
for vulnerability identification in Android applications. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1695–1707.

[70] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang
Liu. 2021. Research on Third-Party Libraries in Android Apps: A Taxonomy and
Systematic Literature Review. IEEE Transactions on Software Engineering (2021).

[71] Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu. 2020. CCGraph: a PDG-based
code clone detector with approximate graph matching. In 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 931–942.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Semantic Versioning Rules
	2.2 Motivating Example

	3 Empirical Study
	3.1 Study of Root Causes of Semantic Breaking
	3.2 Study of Benign Changes

	4 Methodology
	4.1 Grouping Clusters from Call Graphs
	4.2 Deriving Dependencies Summaries
	4.3 Matching Patterns for Benign Changes
	4.4 Measuring Semantic Diff
	4.5 Checking Impact of Semantic Breaking

	5 Evaluation
	5.1 Evaluation Setup
	5.2 RQ1: SemB Detection Accuracy
	5.3 RQ2: Effectiveness of Detecting SemB against Unit Tests
	5.4 RQ3: Study of Compliance with SemVer

	6 Threats to Validity
	7 Related Work
	7.1 Study of Semantic Versioning Compliance
	7.2 API Compatibility Checking
	7.3 Software Evolution Studies

	8 Conclusion
	Acknowledgments
	References

