
Mitigating Persistence of Open-Source
Vulnerabilities in Maven Ecosystem

Lyuye Zhang¶∗, Chengwei Liu∗§, Sen Chen†, Zhengzi Xu∗, Lingling Fan‡, Lida Zhao∗, Yiran Zhang∗, Yang Liu∗
zh0004ye@e.ntu.edu.sg, chengwei001@e.ntu.edu.sg

¶Continental-NTU Corporate Lab, Nanyang Technological University, Singapore
∗School of Computer Science and Engineering, Nanyang Technological University, Singapore

†College of Intelligence and Computing, Tianjin University, China
‡College of Cyber Science, Nankai University, China

Abstract—Vulnerabilities from third-party libraries (TPLs)
have been unveiled to threaten the Maven ecosystem in the long
term. Despite patches being released promptly after vulnerabili-
ties are disclosed, the libraries and applications in the community
still use the vulnerable versions, which makes the vulnerabilities
persistent in the Maven ecosystem (e.g., the notorious Log4Shell
still greatly influences the Maven ecosystem nowadays from
2021). Both academic and industrial researchers have proposed
user-oriented standards and solutions to address vulnerabilities,
while such solutions fail to tackle the ecosystem-wide persistent
vulnerabilities because it requires a collective effort from the
community to timely adopt patches without introducing breaking
issues.

To seek an ecosystem-wide solution, we first carried out an
empirical study to examine the prevalence of persistent vulner-
abilities in the Maven ecosystem. Then, we identified affected
libraries for alerts by implementing an algorithm monitoring
downstream dependents of vulnerabilities based on an up-to-
date dependency graph. Based on them, we further quantitatively
revealed that patches blocked by upstream libraries caused the
persistence of vulnerabilities. After reviewing the drawbacks
of existing countermeasures, to address them, we proposed a
solution for range restoration (Ranger) to automatically restore
the compatible and secure version ranges of dependencies for
downstream dependents. The automatic restoration requires no
manual effort from the community, and the code-centric compat-
ibility assurance ensures smooth upgrades to patched versions.
Moreover, Ranger along with the ecosystem monitoring can
timely alert developers of blocking libraries and suggest flexible
version ranges to rapidly unblock patch versions. By evaluation,
Ranger could restore 75.64% of ranges which automatically
remediated 90.32% of vulnerable downstream projects.

Index Terms—Open-source Software, Software Security, Java

I. INTRODUCTION

The vulnerabilities present in widely used TPLs have
garnered significant attention from communities. log4j-core,
serving as a fundamental library, swiftly responded by re-
leasing patch updates after the exploitation of Log4Shell [1].
Downstream users have taken prompt action to adopt these
patch updates, as reported by Google [2]. Despite a year’s
worth of advancements, Log4Shell continues to impact nu-
merous downstream applications and persist within the Maven

§ Chengwei Liu is the corresponding author.

ecosystem, as reported by many reports and news [3-7]. Given
that over 2,000 vulnerabilities from Maven libraries have been
disclosed by the National Vulnerability Database (NVD) [8],
it is possible that numerous other vulnerabilities persist and
pose a threat to the Maven ecosystem.

Aiming for this urgent threat, many researchers [9-15]
studied the vulnerability impact within the Maven ecosystem
and substantiated vulnerabilities have extensively proliferated
in downstream libraries. A few of them have recognized the
persistence of vulnerabilities over time and provided insights
into potential solutions [9-11], [16]. Wu et al. [9], [17]
revealed that the reachable vulnerabilities are more likely to
be addressed. Developers’ reluctance to upgrade vulnerable
dependencies due to potential breaking changes has been
highlighted by Pashchenko et al. [11] who also discovered that
developers prioritize handling vulnerabilities in direct depen-
dencies rather than transitive ones [18]. Moreover, Industrial
standards have been proposed to promote remediation, such
that OpenSSF [19] proposed the best practice guidance [20]
and a tool, Scorecard [21], for developers on managing vul-
nerabilities in dependencies. Plumber [16] aims for persistent
vulnerabilities in Node Package Manager (NPM) with limited
applicability to Maven due to the rare usage of version ranges
in Maven. However, because these solutions are either user-
oriented aiming for individual projects or inapplicable for
Maven, not all stakeholders in the ecosystem would be ben-
efited, which barely promotes the ecosystem-wide mitigation
of persistent vulnerabilities due following issues:

Issue 1: The lack of collective awareness. Effectively miti-
gating persistent vulnerabilities requires collective efforts from
the community, particularly from developers of widely-used
libraries, rather than just a few individuals. Hence, the ability
to accurately locate influential libraries and swiftly arouse
awareness of relevant developers is missing yet required.

Issue 2: The overreliance on human practices. Although
developers may be aware of the negative consequences of
vulnerabilities, they require a solid understanding of software
security to effectively remediate them. Even if they possess
the necessary skills, remediation practices such as upgrading,
backporting, and migration are often time-consuming and

require significant manual effort. As such, relying solely
on human practices to eliminate vulnerabilities within the
software ecosystem is not realistic.

Issue 3: The backward-incompatibility of dependencies.
Maven libraries are known to have version releases violating
Semantic Versioning (SemVer) [22-25]. Consequently, numer-
ous breaking changes across upgrades may lurk within the
ecosystem. To maintain stability, many developers prefer to
define dependencies using single versions [26], rather than
flexible version ranges, even though Maven allows for the
latter. It further complicates the mitigation of vulnerabilities,
as automatic security upgrades are not widely applicable, in
contrast to the NPM ecosystem [27].

To address the issues outlined above, we did the followings:
• For Issue 1, as illustrated in Figure 1, we first studied

the prevalence of persistent vulnerabilities within the Maven
ecosystem and identified affected libraries for alerts. Specif-
ically, we implemented an algorithm based on a dependency
vulnerability graph we constructed to recursively identify
downstream vulnerable dependents. Based on these, the
impact of persistent vulnerabilities is uncovered regarding
time span and affected libraries1 in the Maven ecosystem
(RQ1). Our study revealed that, upon disclosure, approxi-
mately 82.22% of vulnerabilities within the Maven ecosystem
remain unresolved in over 50% of the downstream libraries.
As of the date of data collection, 58.73% of these vulnerabil-
ities still impacted more than 50% of downstream libraries.
Furthermore, it is revealed that persistent vulnerabilities are
caused by blocked fixes by downstream libraries, and block-
ing libraries can be accurately located with our algorithm
(RQ2).

• For Issue 2, we explored the effectiveness of existing
countermeasures in remediating persistent vulnerabilities
in the Maven ecosystem. However, we found that these
workarounds either required extensive manual effort or were
susceptible to breaking changes, highlighting the need for
an automatic, scalable and compatibility assurable solution
(RQ3).

• For Issue 3, we propose a solution for range restoration
(Ranger) for both clients and the Maven ecosystem to au-
tomatically restore compatible and secure version ranges for
vulnerable libraries and dependents. Ranger checks all types
of code-centric compatibility with state-of-the-art tools to
exclude breaking versions and employs unit tests for vali-
dation. With compatible version ranges, patched versions of
vulnerable libraries and dependencies could be automatically
resolved for downstream users without human intervention.
Ranger also continues to mitigate persistent vulnerabilities in
the ecosystem by monitoring blocking libraries and providing
range suggestions to relevant developers to arouse community
awareness. In the evaluation, Ranger could restore 3, 109
(75.64%) ranges which automatically remediated 10, 678
(90.32%) vulnerable downstream projects (RQ4).

1Affected libraries refer to the libraries that have the vulnerabilities in their
direct or transitive deployable dependencies

Fig. 1. Overview

The contributions we made are as follows:
• We developed Ranger to restore compatible and secure

version ranges which could automatically mitigate the per-
sistent vulnerabilities in the Maven ecosystem.

• We conducted an empirical study to substantiate the per-
sistence of vulnerabilities and quantitatively revealed their
underlying cause and the effectiveness of countermeasures.

• We implemented a monitoring system based on an up-to-
date dependency graph and a search algorithm to locate the
libraries that block vulnerability fixes and suggest remedia-
tion for relevant developers and downstream users.

II. PREPARATION FOR EMPIRICAL STUDY

To commence our study, we first briefly introduce the
concept of SemVer used in Maven. Then, we constructed a
dependency graph using data sourced from both the Maven
Central Repository (MCR) and NVD. Based on the depen-
dency graph, we developed a searching algorithm (ALSearch)
to facilitate tracking of affected libraries throughout the course
of our study.

A. Background of SemVer in Maven

Within the Maven ecosystem, most version numbers ad-
here to the SemVer standard [28]. This standard consists
of three digits: Major, Minor, and Patch. Major upgrades,
which change the Major digit, are the only type of upgrade
that allow for incompatible changes. Version ranges [29]
supported by Maven rely on SemVer. However, 99.21% of
dependency version specifications in Maven are single versions
which are called Soft Version Constraints [30] (SoftVer). The
SoftVer stipulates the preferred version for a dependency so
that Maven mostly resolves the preferred versions for the
dependencies [26].

B. Infrastructure of Study

1) Dependency Graph for Maven
A dependency graph was constructed, including vulnerabil-

ities, as an infrastructure for the empirical analysis. As of 01

Apr 2023, MCR contained 541, 753 libraries and 11, 859, 883
versions, both of which were extracted from the MCR in-
dex [31] and added to the dependency graph as Library and
Version vertices. 82, 708, 563 dependency edges from Version
to Version were extracted from the Project Object Model
(POM) files including properties specifically designed to reg-
ulate the dependency resolution. We used the approximately
over 2k Common Vulnerabilities and Exposures (CVE) for
Maven libraries at NVD as vulnerability data. Due to the
absence of well-formatted mappings between vulnerabilities
and versions, 1, 861 vulnerabilities and their mappings were
collected after cross-checking multiple sources from Github
Advisory [32], Google Open-Source Database [33], and Snyk
Vulnerability Database [34], which are available on our web-
site [35].

2) Search Algorithm
We developed a precise Affected Library Searching Algo-

rithm (ALSearch) that leverages the Maven dependency res-
olution rules to accurately track dependents of vulnerabilities
based on the dependency graph. Unlike the forward resolution
approach used by Maven to resolve dependencies from the root
to leaf vertices, ALSearch was designed to facilitate backward
tracking from vulnerability vertices to dependent vertices. As
ALSearch is tailored for backward tracking, its rules have been
adapted accordingly, and are outlined below:

Scope is a feature to limit the transitivity of a dependency.
Out of the six scopes, only compile and runtime are inheritable
and tracked by ALSearch. Optional dependencies are not
transitive, and thus should not be tracked for dependents
with ≥ 2 depth. Exclusions are used to exclude certain
versions of transitive dependencies. All transitive dependencies
under the exclusions are excluded. Hence, if the libraries with
vulnerabilities are excluded by any dependent, dependents
should not be tracked. Multiple versions selection: If a
library is used with different versions in a dependency tree,
Maven would prioritize the version specified first during a
Breadth-First Search (BFS) resolution from direct to transitive
dependencies. ALSearch considers a target library affected
only if the vulnerable versions of the affected library are closer
to the target library than the non-vulnerable versions.

Incorporating the above rules, for each vulnerability,
ALSearch iterates over downstream libraries in a BFS manner.
During each iteration, it includes two procedures to track a
dependent and validate the tracked target respectively:

• Dependents tracking: Check if the Version vertex has
consecutive dependency edges pointing to any vulnerable
version of a library affected by a Vulnerability vertex. If yes,
check if the properties on dependency edges adhere to the
aforementioned rules. If yes, proceed to the next procedure.

• Dependencies validation: Resolve dependencies of the target
Version vertex following normal Maven dependency resolu-
tion rules in a reversed direction until the version of the
vulnerable library is resolved. If the resolved version is
vulnerable, the target Version vertex is considered an affected
version.

After the iteration, the affected Version vertex is stored

with the publishing date and depth. To boost performance,
the maximum depth of the call chain is initially set to 10,
based on research indicating that the semantics decline after 10
successive calls [36]. Our study later also confirms that there
are significantly fewer affected libraries beyond a depth of 9.
We verified ALSearch by randomly selecting 1, 000 affected
library versions and retrieving dependency trees of them using
the mvn deptree command. If the library did depend on a
vulnerable dependency, the library was considered affected.
Only 12 (1.20%) libraries were false positives, mainly due
to different OS requirements or incomplete data in MCR
(discussed in Threat of Validity Section VI).

III. EMPIRICAL STUDY

To quantitatively assess the prevalence and underlying cause
of persistent vulnerabilities in the Maven ecosystem, we con-
ducted an empirical study to answer the following research
questions:
• RQ1: How prevalent are persistent vulnerabilities in the
Maven ecosystem? The impact of vulnerabilities over time is
evaluated regarding the distribution of time spans and counts
of affected libraries to demonstrate persistent vulnerabilities.
• RQ2: What are the causes of persistent vulnerabilities? We
quantitatively uncovered the underlying factors by categorizing
and analyzing 6 cases to identify the primary cause.
Dataset: the primary dataset is the dependency graph in
Section II-B1. To investigate the prevalence of Log4Shell in
real-world projects, besides data from MCR, an additional
dataset was created by cloning Java repositories on GitHub
managed by Maven (with POM files) and filtering out those
with fewer than 20 stars to ensure their popularity. As of April
1, 2023, a total of 13,638 repositories were collected, and
dependency trees were extracted using the Maven command
mvn deptree. The dependency trees of 9,220 repositories were
successfully extracted.

A. RQ1: Analysis of persistent Vulnerabilities

The impact of persistent vulnerabilities on downstream
affected libraries is demonstrated by their long-tail prevalence.
We used Log4Shell as an example to showcase the metrics we
used and then evaluated all vulnerabilities to demonstrate the
persistence.

1) Log4Shell Analysis
First, we retrieved the affected library and version vertices

associated with release dates with ALSearch. Because usu-
ally, the latest version of a library is the release currently
maintained by the developers, a library is considered affected
if the latest version depends on vulnerable log4j-core. The
downstream libraries were categorized into 3 categories (1)
Affected: The downstream library’s latest version is affected.
The proportion of these libraries is denoted as Pvul. (2)
Patched: The library’s latest version is not affected, but at
least one of its previous versions was affected. The proportion
of them is called Ppatch. (3) Removed: The older versions
of the library were affected, and the latest version does not
depend on log4j-core anymore.

%

%

%

%

%

%

%

%

%

>=85%

>=75%

>=65%

>=55%

D
ep
th

Fig. 2. Heatmap of Proportion of Affected Libraries by Log4Shell

The Pvul of Log4Shell over time is demonstrated in the
heat map Figure 2. In the heatmap, the x-axis refers to the
timeline from the publishing date at NVD to 01 Apr 2023
based on months, while the y-axis refers to the depth. It is
shown that Pvul at depth 1 decays faster than at other depths.
It is because those libraries serve as first-level dependents,
which would be quickly aware of the vulnerable versions of
log4j-core in their dependencies. With the depth increasing,
the downstream libraries are less likely to be aware of the
transitive vulnerability and less likely to execute the vulnerable
code of log4j-core. Thus, the decaying rate decreases as the
depth goes deep.

In Figure 3, Pvul and Ppatch are depicted by days. The sum
of Pvul and Ppatch is nearly 100% because the number of the
third category, removed, is negligible. The Pvul reached 50%
in Oct 2022 and decayed much slowlier than before. Since
Pvul decays in a decelerating manner, Log4Shell would remain
persistent in the ecosystem without abating for a long time.
Hence, we define a metric, Half-life, to measure the time that
Pvul decays to 50% from its initial value. The Half-life of
Log4Shell can be measured based on days as 308 days.

Although the Pvul decays slowly, the number of newly re-
leased affected versions decreases more quickly than Pvul as in
the same figure at the right axis. The number of new versions
gradually decreases from the peak of 361 when Log4Shell was
initially exposed. It is seen that there were still new affected
versions published after 15 months of exposure. We further
investigated the depths of these versions and found out that
94% of them were not first-level dependents. It suggests that
the upstream dependencies of these affected libraries failed
to upgrade log4j-core in time. Note that the number of new
vulnerable versions has been fluctuating because the numbers
are usually small on weekends.

To assess the prevalence of Log4Shell in real-world Java
projects, we searched for vulnerable versions of log4j-core in
the dependency trees of the 9, 220 Maven projects we col-

Start date
2021-12-09

361

114 116

median: 46%

251

Affected libraries drop to 50%
Half-life: 308 days

P_vul decays swiftly
in first 3 months

2022-10-13median: 53%

47

Fig. 3. Accumulated Affected and Patched Libraries for Log4Shell

lected earlier. Our search revealed that 973 (10.55%) of these
repositories had used log4j-core in their dependency trees, out
of which 392 (40.28%) were using the vulnerable versions of
log4j-core. We confirmed that none of these repositories had
published vulnerable versions to MCR, which indicates that,
besides libraries, end users were still using vulnerable log4j-
core versions in their projects after 15 months of disclosure.

Finding 1: The Pvul of log4j-core decayed rapidly to
65% in the first 3 months upon disclosure. However, the
decaying was decelerating, and it took 308 days to reach
its Half-life. Log4Shell was still affecting 392 GitHub
Maven projects after 15 months.

2) Other Java Vulnerability Analysis
To find out if the decelerating decaying of Pvul is preva-

lent for other vulnerabilities, we measured the Pvul for all
collected Java vulnerabilities as illustrated in Figure 4. Based
on Pvul, the Half-lives of vulnerabilities were derived. Since
the exposure duration (from publishing date to data collection
date 01 Apr 2023) varies greatly among vulnerabilities, we
normalized Half-life by dividing the exposure duration. While
the New Release Span (NRS) was calculated by days from
the CVE publishing date to the last date that affected versions
are released. New Release Span was also normalized by the
same exposure duration per vulnerability. Because the number
of affected libraries and versions vary greatly among vulner-
abilities, the vulnerabilities with exceptionally few affected
versions could bring deviations to the distributions. To ensure
the representativeness of the vulnerability data set, we filtered
out vulnerabilities that affected fewer than 100 versions and
plotted the same normalized distributions in Figure 4 as
Filtered. The number of filtered vulnerabilities was 1, 319.

The normalized Half-lives can be negative if the Pvul

already drops below 50% before the vulnerability is published.
Also, the normalized Half-lives can be 100% if the Pvul is still
above 50% by the data collection date. According to Figure 4,
only 17.78% of vulnerabilities have their Pvul dropped below
50% before the publishing of vulnerabilities, which means

the rest 82.22% of vulnerabilities affect 50%+ downstream
libraries when they were disclosed. Even by the data collection
date, 58.73% of vulnerabilities still maintain over 50% Pvul.
Hence, it is concluded that most vulnerabilities persist and
continue to affect downstream libraries, as seen in the case
of Log4Shell. In Figure 4, Filtered half-life, denoted by light
green bars, exhibits the distribution of filtered vulnerabilities.
Because the numbers of filtered and pre-filtered vulnerabilities
in most intervals are close to each other, it means vulnera-
bilities that were filtered out did not cause deviations. It is
noteworthy that both ends of the distribution are higher than
those in between, which means most vulnerabilities either were
quickly remediated by downstream libraries or persisted in the
ecosystem.

The normalized New Release Span is used to indicate
the impact of vulnerabilities in new releases. In Figure 4,
normalized New Release Span is depicted by yellow lines. 39%
of vulnerabilities still have new affected versions released in
the month of data collection (normalized New Release Span
is 100%), which indicates that nowadays there are still a non-
trivial number of downstream developers who fail to upgrade
their vulnerable dependencies. Although the distribution of
New Release Span is dissimilar to the half-life, they both
have valley-like shapes, which proves the polarization in
vulnerability remediation of the Maven ecosystem. We further
measured Full-life (the number of days that Pvul drops to zero)
instead of Half-life, and it turned out that only 196 (9.08%)
of vulnerabilities have finite Full-lives, which means only 9%
have all downstream libraries’ latest versions fixed regardless
of how long time it took.

Finding 2: 82.22% of vulnerabilities affected 50%+
downstream libraries when they were disclosed. The vul
rates of vulnerabilities have been decaying in a deceler-
ating manner over time, but till our data collection date,
58.73% of them still maintained 50%+ vul rates. There
are 39% of vulnerabilities that still affect the new versions
of downstream libraries that were released in the month
of data collection. Only 9% of vulnerabilities terminated
their persistence.

B. RQ2: Study of Underlying Causes

We aim to uncover underlying causes in this RQ. Inspired
by the fact that 94% of new versions are transitively affected
by other vulnerable downstream libraries, we attempted to in-
vestigate the causes based on vulnerability propagation paths.

1) Distribution of the causes
We used a general model that included roles from the source

of vulnerability to end users in the vulnerability propagation
path as depicted on the left in Figure 5. The roles are
Vulnerable libraries, Medium dependents, and End users.
From RQ1, it is known that the misbehavior of these roles may
block the patches from downstream libraries, which leads to
persistent vulnerabilities. Hence, we further investigated what
kind of misbehavior blocked the patches. To clearly clarify

17.78% CVEs stop
propagating

58.73% CVEs still affect
50%+ libraries now

Fig. 4. Distributions of Normalized Half-lives and New Release Span

causes without overlapping, the blockage of patches ascribes
to the first role that conducts misbehavior during a bottom-up
investigation because downstream roles automatically inherit
configurations from the upstream.

Based on the sequence of release time of two parties on
each dependency relationship, we could summarize 6 causes
out of three types of dependency relationships among 4 roles
as illustrated in Figure 5. In the figure, the rectangular box
with dashed lines refers to the absent version vertex that is
supposed to be present. And the boxes filled with purple color
refer to the roles that are to blame for the patch blockage.
For example, in the first column, the Cause 1 is presented:
The downstream dependents are affected by the vulnerability
because the vulnerable library fails to release the patched
version in time. Note that the First Depts are split apart from
Medium Depts as an independent role because the first-level
dependents directly determine the versions of the vulnerable
libraries for the other medium dependents and can explicitly
select the strategy between version ranges and SoftVers.

In Figure 5, Cause 2 refers to the First Depts still using the
vulnerable versions even if the patched versions are available.
The Cause 3 refers to the First Depts failing to release
new versions that depend on the patched versions so that
the downstream dependents are forced to use the non-patched
versions of First Depts. Similarly, Cause 4 and Cause 5 refer
to the corresponding misbehavior of Medium Depts. The last
Cause 6 stands because the versions explicitly overridden by
End users are still vulnerable versions.

Next, with the causes summarised, the importance of each
cause is embodied by its proportion of occurrences. To avoid
duplicated counts, we only counted the number of paths
where blockage of patches occurred. Figure 6 illustrates the
proportions of each cause over all valid paths. Firstly, the
Cause 1 is ruled out, because it is caused by the absence
of patches instead of the blocked patches. Secondly, it is seen
that the Medium Depts account for most of the paths, which is
36.72%, and First Depts account for a very close number of
paths, which is 35.24%. Considering that the misbehavior of
any role along the path could lead to the blocked patches, it

Medium
depts

First
depts

Vulnerable
version

Patched
version

Vulnerable
libraries

Md1

Time

End
users

Md2

Fd1 Fd2

Eu1 Eu2

Vulnerable
version

Patched
version

Md1 Md2

Fd1 Fd2

Eu1 Eu2

Vulnerable
version

Patched
Version

Md1 Md2

Fd1 Fd2

Eu1 Eu2

Vulnerable
version

Patched
version

Md1 Md2

Fd1 Fd2

Eu1 Eu2

Cause 1

Timestamp 1 stamp 2 stamp 1 stamp 2 Time stamp 1 stamp 2 Time stamp 1 stamp 2

Vulnerable
version

Patched
version

Md1 Md2

Fd1 Fd2

Eu1 Eu2

Vulnerable
version

Patched
version

Md1

Fd1 Fd2

Eu1 Eu2

Time stamp 1 stamp 2 Time

Md2

O
ve

rid
in

g

stamp 1 stamp 2

Cause 2 Cause 3 Cause 4 Cause 5 Cause 6

Fig. 5. Scenarios of Different Causes

Cause 1

1.5k, 0.33%

First Depts Medium DeptsVulnerable
Libraries

Users

Cause 2 Cause 3 Cause 4 Cause 5

Cause 6

Fig. 6. Proportions of Each Cause

is remarkable that First Depts could affect the similar amount
(165k and 172k) of paths as the rest all Medium Depts at 2-
15 depths, which proves that First Depts is the most critical
role regarding facilitating the patch adoption than other roles.
Finally, although the proportion of Cause 6 is small, it proves
that End users’ decisions are not always reliable. In fact, much
domain knowledge and manual efforts are required for End
users to select the best version against all vulnerabilities.

Finding 3: It is concluded that misbehavior by First
Depts (35.24%) and Medium Depts (36.72%) are guilty
of the majority of affected paths. The First Depts are the
most significant role in terms of unblocking patches.

In reality, most developers are only concerned by the vulner-
abilities in their direct dependencies according to a study [18].
If a First Dept uses the vulnerable version, the downstream
libraries would automatically inherit the vulnerable version,
which means that developers of First Depts should be aware
of the vulnerability and promptly upgrade vulnerable direct
dependencies to patched versions instead of relying on down-
stream developers. Unfortunately, due to widely used SoftVers
(99%) in Maven, the versions specified for vulnerable libraries
offer limited flexibility to upgrade against vulnerabilities. It
would be unrealistic to force developers in Maven to swerve
to version ranges abruptly because SemVer is not properly
complied with in Maven and the backward compatibility has
to be manually assured. Thus, to avoid reliance on develop-
ers, an automatic and scalable way to introduce flexibility
to dependency versioning is required to mitigate persistent
vulnerabilities.

Finding 4: The root cause of the misbehavior is the
widely used SoftVers which greatly limit the flexibility
of dependency version selection. Without flexible version
ranges, the downstream libraries and applications are
automatically prone to vulnerable dependencies even if
patched versions are released.

IV. METHODOLOGY AND EVALUATION

Because the limited flexibility hinders the spread of patches,
we aim to introduce the flexibility to unblock the patches.
First, we reviewed the existing solutions to identify the pros
and cons, based on which, our solution Ranger is proposed
and evaluated to answer the following research questions:
• RQ3: How do existing solutions address persistent vulner-
abilities?
• RQ4: How effective is Ranger regarding mitigating the
persistence of vulnerabilities?

A. RQ3: Review of Existing Solutions

The solution recommended by Maven is the semantic ver-
sion ranges [29]. Unfortunately, considering that SemVer is
not properly complied with, instability could be introduced by
ranges so that ranges are rarely adopted. Apart from ranges,
the most used approach is the transitive version override.
If the versions of transitive dependencies are vulnerable,
any dependent can override the transitive vulnerable versions
by dependencyManagement. Hence, as solutions supported
by Maven, ranges and version overriding can be used to
mitigate the persistence of vulnerabilities. Note that besides
Maven, other popular Java Package Managers, Gradle [37] and
Ivy [38] implement similar overriding mechanisms, Depen-
dency Constraints and Dependency Overriding respectively
to determine the versions of transitive dependencies if the
transitive dependencies exist. Thus, we refer to this overriding
mechanism as dependency version Overriding. There are also
other workarounds, such as tampering with local libraries of
vulnerable dependencies to manually backport patches for
deployment environments. But temporary workarounds are
too infrequently used to be discussed. Furthermore, exclusion
supported by Maven is not discussed either, because it is used

99.21% are
open ranges

46.39%
53.61%

89.94%

10.06%

More than 50% versions
included are vulnerable

77.53% cases due to
patches unavailable

Fig. 7. Usage of Vulnerability Related Version Ranges

to exclude unused transitive dependencies which are not worth
mitigating the vulnerabilities for.

1) Study of the Usage of Ranges
From the 82m collected dependency relationships, only

637, 783 (1.02%) of them use the semantic version ranges. Out
of the range-use dependencies relationships, 29, 556 (4.63%)
are specified for the vulnerable libraries by First Depts. We
further investigated these vulnerability-related ranges to reveal
how many vulnerabilities can be automatically bypassed.

As illustrated by the left two bars in Figure 7, considering all
versions within the ranges, 53.61% of versions are vulnerable.
However, Maven would usually select the latest (semantically
highest) version in a version range as the resolved version
of the dependency. Thus, if only the latest versions in these
ranges are considered, the proportion of vulnerable latest
versions drops to 10.06% in the right 2 bars in Figure 7, which
proves that version ranges can effectively free dependents from
vulnerabilities if patched versions are included. To understand
how patched versions were introduced, we went through the
ranges whose latest versions are not vulnerable. Out of the
26, 531 non-vulnerable versions, 99.21% of them belong to
ranges that are actually right open ranges, such as [1.1,)
without defining the upper bounds. Because the right open
ranges would always be resolved to the latest version, the po-
tential breaking changes could be introduced to the dependents
whenever any incompatible new versions are released.

Finding 5: Although the version ranges allow flexible
upgrades of vulnerable dependencies, they are rarely used
in Maven (1.02%). The fact that the latest versions of
89.94% of version ranges of vulnerable libraries were
no longer vulnerable proves the effectiveness of version
ranges. However, 99.21% of ranges that successfully by-
passed vulnerabilities were open ranges that are subject to
unpredictable incompatibility issues. Hence, to properly
use version ranges, compatibility has to be assured.

2) Study of the Version Overidding
Because only Medium Depts and End users, the

indirect dependents of vulnerable libraries, would use
dependency version Overriding to control the versions of
transitive dependencies, we study the effectiveness of
dependency version Overriding for them. In total, there are
639, 710 (6.50%) POM files for versions that use dependency-

TABLE I
COUNTS OF POMS WITH dependencyManagement

With vul libraries Affected by CVEs Bypass CVEs Overlapping

295,951 254,043 (86%) 256,841 (87%) 214, 933 (72%)

Management, from which we extracted the overridden versions
per POM file. After matching the overridden versions with
vulnerability mappings, we found 295, 951 POM files have
overridden versions of vulnerable libraries. Then, these files
were categorized into 2 cases in Table I regarding whether
they bypassed the vulnerabilities: (1) Affected: Any overridden
version in the POM file was still vulnerable. (2) Bypass: The
default version was vulnerable but the overridden was not.
Note that there was overlapping because a POM file may have
multiple overridden versions.

It turned out 86% of POMs bypassed the vulnerabilities
in transitive dependencies because probably their developers
were aware of the vulnerabilities and explicitly addressed them
with dependencyManagement. However, it is surprising that
72% (214, 933) POM files both bypassed some CVEs and
introduced other CVEs at the same time. Only 14% of POMs
completely bypassed all vulnerabilities. It implies that fixing
vulnerabilities with version overriding is a non-trivial job,
which is the first weakness of version overriding, Knowledge
and efforts. The developers must equip with extensive domain
knowledge of vulnerabilities and invest efforts to ensure their
eradication. Although version overriding is able to address
vulnerabilities for the current project within a POM file, it is
not inheritable according to Maven Specification [39] so that
it does not benefit the downstream libraries. Another weakness
of version overriding is Non-inheritability, because of which,
Since the version overriding only works for current projects
instead of dependents that depend on the projects, the vul-
nerable versions are still being used by downstream libraries
unless all developers along the propagation path conduct the
same overriding. Therefore, the patch versions cannot be
automatically adopted by downstream users. In conclusion, the
version overriding can only serve as a temporary workaround
instead of boosting the self-healing of the ecosystem.

Finding 6: The adoption rate of dependency version
overriding is 6.50% and only 14% of adopters com-
pletely bypassed all vulnerabilities. Because dependency
version overriding requires knowledge and manual effort
and is unable to benefit downstream users due to non-
inheritability, it is not effective in eliminating persistent
vulnerabilities.

Another solution worth discussing is Plumber [16] which
addresses the persistent vulnerabilities in the NPM ecosys-
tem. Plumber employs a dependency graph to identify the
dependents that block fixes of vulnerabilities. Subsequently, it
endeavors to upgrade the blocking dependents to compatible
versions. If upgrading is not possible within the bounds

of compatibility, Plumber generates remediation suggestions,
such as backporting and migration, both of which require
manual intervention. However, Plumber is not applicable to
Maven, because it relies on compatible ranges that are pre-
specified by developers, a feature that is prevalent in NPM [27]
but not in Maven, which further necessitates the compatible
version ranges for Maven.

B. RQ4: Methodology and Evaluation of Ranger

1) Requirements of the Solution
Based on the previous research question, existing solutions,

such that open version ranges are subject to breaking changes
and dependency version overriding is non-inheritable and re-
quires intensive manual efforts. Despite the limited usage,
version ranges were proven to be effective for unblocking the
patches. However, due to legacy reasons, developers predom-
inantly utilize SoftVers, making it impractical to mandate a
shift toward version ranges, not to mention that version ranges
have to be manually curated by developers. Therefore, our
objective is to propose an automated solution for restoring
version ranges of both vulnerable libraries and dependencies
that transitively depend on vulnerable libraries from SoftVers.
By restoring the version ranges, vulnerability fixes within the
ranges can propagate smoothly and automatically to down-
stream users. Moreover, for the purpose of ecosystem-level
implementation, Ranger should possess the ability to continu-
ously monitor the Maven ecosystem for blocking dependents
and promptly provide the restored version ranges along with
corresponding suggestions to the developers of such blocking
dependents. This approach would expedite the propagation of
patches throughout the ecosystem.

2) Design of Ranger
To this end, we have proposed Ranger, which comprises

a server-side edition and a client plug-in. The client plug-
in for Ranger can be integrated into a developer’s workflow
as a Maven plug-in. For a Maven project, this plug-in can
automatically replace the SoftVers in the POM file with
curated compatible version ranges, and the developer can
effortlessly publish the updated POM file with version ranges
to benefit downstream users. On the other hand, the server-
side edition of Ranger employs the ALSearch algorithm to
continuously monitor an up-to-date dependency graph for
instances of vulnerability fix blockage caused by SoftVers.
When a blockage is detected, Ranger calculates compatible
version ranges for the vulnerable constraints and reports this
suggestion of version ranges to the relevant developers.

As depicted in Figure 8, we first introduce the plug-in that
accepts a dependency with SoftVer and class files of the project
as input. Given that version ranges specified by developers
typically consider compatibility and functionality, Ranger aims
to ensure them for the restored version ranges. Specifically,
given a SoftVer vs, Ranger retrieves sorted candidate versions
Vcand = {v1, v2, ..., vn} from the MCR as a list as well as
the version and vulnerability mappings from the dependency
graph. Then Ranger determines which versions from Vcand

should be included in the restored range Vr to ensure Vr is

Algorithm 1: Algorithm of Ranger
Input: SoftVer vs, candidate versions Vcand, class files f
Output: Restored version range Vr

1 V ′ ← set(vs)
2 dtvs ← dependencyTree(vs)
3 vulvs ← queryCV E(dtvs)
4 foreach vcand in Vcand do
5 dt← dependencyTree(vcand)
6 vul← queryCV E(dt)
7 if & vul ≤ vulvs then
8 V ′ ← vcand

9 sort(V ′)
10 Vupper ← V ′.truncate(vs, vlast)
11 Vlower ← V ′.truncate(vfirst, vvs)
12 foreach v in Vupper do
13 api = compatibilityCheck(vs, v)
14 if ¬reachable(f, api) then
15 Vr ← v

16 foreach v in reverse(Vlower) do
17 api = compatibilityCheck(vs, v)
18 if ¬reachable(f, api) then
19 Vr ← v

20 foreach vr in Vr do
21 if queryCV E(dt(vr)) > min(V ul(Vs)) then
22 Vr remove vr

23 foreach vr in Vr do
24 if ¬unitTest(vr) then
25 Vr remove vr

26 return Vr

more secure, flexible, and compatible. We further formulate
the problem into a Multi-Objective Optimization problem:
• Objective 1 (Primary): The maximum number of vulnera-

bilities for all versions in Vr is minimized to guarantee any
version resolved by Maven is more secure than vs.

• Objective 2 (Secondary): Vr should include as many can-
didate v as possible for better flexibility.

• Constraint 1: Vr must be compatible with vs.
• Constraint 2: any vr in Vr must has not greater vulnera-

bilities than vs to ensure the effectiveness of restoration.

min f1 = max(

dt(vr)∑
n=1

countvul(n))

max f2 = |Vr|
s.t. c1 : compatibility(vs, v1) = 1|∀vr ∈ Vr

c2 :

dt(vr)∑
n=1

countvul(vr) ≤
dt(vs)∑
n=1

countvul(vs)|∀vr ∈ Vr

where dt(v) = {n1, n2, ..., nt} is to resolve a dependency
tree from the version v. the total vulnerabilities of v are the
sum of numbers of vulnerabilities associated with each node
in dt(v) to include transitive vulnerabilities.

We implemented Algorithm 1 in Ranger to solve the prob-
lem above. From L1-L8, Ranger first queries the number of

vulnerabilities for the resolved dependency tree of SoftVer vs
and each version in Vcand. To adhere to constraint c2, the
versions with more vulnerabilities than vs are filtered out.
Then from L9-L11, Ranger sort the filtered versions in a
SemVer order and split the list of versions into the upper and
lower parts by vs to add potential versions bi-directionally for
more candidates. For both the upper and lower parts, Ranger
checks the compatibility between candidates and vs. Note that
the compatibility checkers employed by Ranger can handle all
types of code-based compatibility as specified in the Oracle
documentation [40], including Source, Binary, and Behav-
ioral Compatibility. The Source and Binary Compatibility are
ensured by two commonly used tools, revapi and jcp [41],
[42] with high accuracy. For Behavioral Compatibility, we
used the only static detector Sembid [43]. Specifically, Ranger
calculates incompatible APIs with the checkers and compares
them with the reachable APIs collected from the call graphs.
The call graphs are constructed with Soot Spark [44] from
the class files of the project and byte code of the dependency
to determine whether any incompatible API is reachable. If
a candidate version has no reachable incompatible APIs, it is
included in the range. In L13, compatibility checkers serve
as a pre-filter for the final validation because they are static
and more efficient than testing. In L20-L22, Ranger excludes
versions that have more vulnerabilities than the minimum
required in order to satisfy Objective f1. In L23-25, given
the heavier resource demands of unit tests, Ranger further
excludes versions failing the unit test serving as the final
validation.

Regarding the server-side edition of Ranger, the initial
step involves identifying the blocking dependents, denoted as
First Depts, by means of the ALSearch algorithm. The plug-
in running on the server proceeds to calculate and test the
compatible version ranges using the repositories stored in our
database. If a version range covering the patched version is
successfully restored, Ranger generates a report that is sent to
the relevant developer. In cases where range restoration fails,
Ranger attempts to locate the Second Dept of the failed First
Dept from the dependency graph and calculates the restorable
range towards the First Dept instead of the vulnerable library.
This is because First Dept is the direct dependency of Second
Dept and only specified versions of direct dependencies are
transitive for the rest of the dependents. This process is
repeated 10 times until no range can be restored.

3) Evaluation of Ranger
To showcase the effectiveness of Ranger in real-world

scenarios, we initially evaluated the plug-in on a dataset of
252 GitHub repositories that included vulnerable versions of
log4j-core in their dependency trees, as of 01 Apr 2023.
Subsequently, we conducted a large-scale evaluation on an-
other dataset to demonstrate the effectiveness of Ranger for
mitigating persistent vulnerabilities in the Maven ecosystem.
• Evaluation of Plug-in: Dataset: From the 9, 220 reposi-
tories in Section III, we retrieved the dependency by Maven
command and check if any vulnerable log4j version was still
in use. 374 repositories were derived. Only 252 of them

Local Repository

User project

POM file

Source

Compatibility
Checkers

Class files

Soft ver
1.2.3

Binary

Behavior

pair with

Ver Ver...
Vulnerability
mappings

Dependency

filter out
vulnerable

Call Graphs

soot

Restored version range
[1.2.0, 1.5.6]

If reachable APIs
are compatible

Ecosystem

report

add ver to range

Fig. 8. Overview of Ranger

TABLE II
RESULTS OF RANGER

Restored Failed Unit Tests Restore Rate Recall/Precision

*GT 171 N.A. 67.85% N.A.
Ranger 160 19 63.49% 93.57%/100.00%

1) GT stands for ground truth.

Fig. 9. Number of Vulnerable Lib-vers over Months after Applying Ranger
to Dependents at 1-10 Depths

could be successfully compiled and tested. Results: We ran
Ranger to only restore the version ranges for log4j-core in 252
parent POM files to control the variables. 160 secure ranges
of them were restored with a 63.49% restoration rate. Before
running the compilation and unit tests, 179 raw ranges were
statically calculated, which means unit tests could reduce 19
false positives. It should be noted that false negative cases
were present in our evaluation, as false alerts produced by
static compatibility checkers exclude the potential candidate
versions, and unit tests only narrow the range but not widen
it. Thus we manually checked the failed cases and found that
11 could have been restored. The results were summarized in
Table II with the actually restorable repositories accounting
for 67.85%. Although Ranger had some false negatives, it
hardly introduced false positives that could break current and
downstream projects. It was proven that 93.57% of restorable
version ranges could be automatically restored by Ranger.
• Evaluation of Server-side Edition: Dataset: To simulate
a scenario where developers of downstream dependents adopt
the version ranges generated by Ranger upon the disclosure
of a vulnerability, we compiled a list of all affected libraries

and versions published after the disclosure of Log4Shell. This
resulted in a total of 11,822 library-version pairs, denoted as
lib-vers. Results: Regarding the lib-vers, Ranger first restored
ranges for the First Depts at Depth 1. This resulted in a
successful restoration of 486 out of 668 dependent lib-vers.
The generated ranges were then applied to the dependency
graph, and we performed ALSearch again to retrieve the
affected Second Depts at Depth 2 on an updated graph. Out
of 927 Second Depts, 731 were successfully restored. We
repeated this process for a total of 10 depths and evaluated the
number of vulnerable lib-vers over time, as shown in Figure 9.

In total, it took 4, 110 iterations to successfully restore
3, 109 version ranges with a 75.64% restoration rate. As a
result, 90.32% of the vulnerable lib-vers were successfully
remediated from Log4Shell, leaving only 1, 144. It is clear that
the number of vulnerable lib-vers increases much more slowly
over time after applying Ranger to the 10th dependents than
the primitive state. This suggests that the propagation of the
vulnerability was effectively suppressed from the beginning
upon disclosure of Log4Shell. Moreover, it is observed that
the number drops 45.95% when Ranger is only applied to the
First depts at Depth 1, which indicates that First depts have a
significant impact on downstream libraries yet not enough to
suppress the propagation. Also, the marginal effect of Ranger
drops fast as depth goes deep in the Figure and there were only
8 ranges to restore at Depth 9 and 10, which means Depth 10
is effective enough against persistent Log4Shell.

However, there still remained 1, 144 unfixed lib-vers re-
quiring manual intervention. We categorized the remaining
cases into three: (1) No compatible patched versions to
upgrade (481 cases, 42%): Ranger found there was no version
satisfying the constraints. For these cases, Ranger generated
a report with breaking APIs and call chains with suggestions
of manual fixes for developers to resolve the incompatibility.
(2) No secure versions available (592 cases, 52%): This
mostly happens for dependents at Depth 2+ because their
direct dependencies may not have published a secure version
that transitively depends on a patched version of log4j-core.
It is a common case, especially for a newly disclosed vul-
nerability, for which, Ranger would suggest the developers
find a substitution if the vulnerable library is reachable. If
not reachable, a suggestion to exclude the vulnerable library
would be suggested. On the other hand, Ranger will continue
to monitor the availability of patched versions. (3) Internal
error (71 cases, 6%): These were caused by issues irrelevant
to the design of Ranger, namely, failed jar downloading, failed
call graph generation, and the errors of compatibility checkers.

Finding 7: Our evaluation demonstrated that Ranger, as a
plug-in, was successful in restoring secure version ranges
for 63.49% of the 252 real-world GitHub repositories,
with a high recall of 93.57%. In a simulated experiment,
the server-side edition of Ranger was able to restore ver-
sion ranges for 3, 109 (75.64%) of the dependents which
successfully remediated 10, 678 (90.32%) of downstream

vulnerable projects.

V. DISCUSSION

• Compatibility check should be aligned with SemVer,
especially in Maven. Many studies [22], [23], [25], [43],
[45] have revealed that SemVer has not been well adhered to
by developers in the Maven ecosystem, leading to prevalent
SoftVer. Although Ranger could restore version ranges to
include patched versions, the patched versions must be those
already published. To timely apply the patches upon releases,
version ranges have to be open ranges or semi-open ranges,
e.g. caret range ˆ1.2.3 [46], which requires strict compliance
with SemVer to assure compatibility. Therefore, in the long
run, Ranger could mitigate the persistent vulnerabilities, but
only the widely used and strictly backward compatible open
version ranges could nip them in the bud.
• More efforts and resources should be leaned on widely
used but poorly maintained libraries. As revealed by our
evaluation in Section IV-B3, there were 592 cases with-
out patched versions to upgrade to. Following a manual
investigation, it was discovered that several libraries served
as dependencies in a large number of projects or libraries,
but their maintenance was inadequate. To address persistent
vulnerabilities, it is imperative that the maintainers explicitly
release patched versions for the benefit of downstream users.
Therefore, this kind of libraries should arouse the collective
awareness of the community, and the resources of open-source
software governance should be directed towards these widely-
used but poorly-maintained libraries to promote a more secure
ecosystem.

VI. THREATS OF VALIDITY

The primary threat of the study is the assumption that
dependents of vulnerable libraries were considered affected
without fine-grained reachability or triggerability analysis.
Because analyzing the reachability of all vulnerabilities in the
entire Maven ecosystem at a large scale is quite expensive,
we did not take it into consideration. Furthermore, vulnerable
libraries are also packaged into the deployment environment,
and having vulnerability is not a secure practice because they
could be exploited someday given the evolving source code.
Hence, to promote the best security practice in the Maven
ecosystem, we made such an over-assumption.

Another threat is the assumption that successful compilation
and passing unit tests after applying version ranges generated
by Ranger are sufficient to confirm successful version range
restoration. However, in real-world software development,
unit tests have limited coverage, and passing them does not
necessarily guarantee that the restored version ranges satisfy
all requirements of developers. Despite this limitation, unit
tests are a critical component of deployment and are currently
the most convenient validation approach available.

The last threat is the accuracy of the algorithm ALSearch
that is used to track the downstream libraries. The first factor
affecting the accuracy is the dependency graph sourced from
MCR, and a few POM files in MCR could be unavailable

leading to incomplete dependency edges in the graph. Another
factor is that the environment requirements of dependencies
were ignored, which could lead to false positives because some
dependencies are only installed in certain environments, such
as Windows. However, these factors were proven to be corner
cases in the validation experiment in Section II-B2 so that the
overall conclusions are not undermined.

VII. RELATED WORK

A. Persistence of Vulnerabilities

Researchers [9-11], [14], [16] have evaluated the prop-
agation of vulnerabilities within the Maven ecosystem and
recognized the long-term persistence of some vulnerabilities.
Developers tend to address reachable vulnerabilities more
than unknown ones due to the potential for exploitation, as
revealed by Wu et al. [9]. Pashchenko et al. [11] found that
upgrades to vulnerable dependencies are often delayed due to
potential breaking changes. Li et al. [10] conducted a similar
quantitative study using a dependency graph integrated with
vulnerabilities. Benelallam et al. [14] proposed the Maven
dependency graph that has been widely used for ecosystem
vulnerability analysis. Plumber [16] proposed by Wang et al.
is a viable approach to address persistent vulnerabilities in
NPM but not applicable to Maven because it relies on the pre-
defined version ranges prevalent in NPM. Although insights
have been highlighted, they have not proposed any tailored
solution for persistent vulnerabilities for Maven.

B. Remediation for Maven Vulnerabilities

Regarding Maven vulnerability remediation, many solutions
have been proposed [12], [15], [19-21], [47-54]. Coral [47]
is a systematic approach to address the vulnerabilities in the
dependency trees of user projects. Du et al. [15] constructed a
patch tracing system to locate patches to remediate the vulner-
abilities. Industrial organization, OpenSSF [19], has proposed
the best practice guidance [20] and a tool, Scorecard [21], for
developers on managing vulnerabilities in dependencies for de-
velopers. Software Composition Analysis (SCA) [48], [55-58]
tools have also been widely adopted to assist in the mitigation
of vulnerabilities persistent in users’ projects. However, these
studies focused on user-oriented remediation by developers
instead of ecosystem-wide vulnerability mitigation.

C. Dependency Versioning in Modern Ecosystem

Many researchers have recognized the significance of the
dependency versioning scheme for the security and stability
of open-software ecosystem. [2], [22], [25], [26], [45], [59]
Dietrich et al. [26] studied 17 package managers to investigate
the dependency versioning recommended by them and found
Maven heavily uses SoftVer leading to low flexibility of de-
pendency versions. Google [2] released a blog about persistent
vulnerabilities like Log4Shell and pinpointed that the SoftVers
could be a cause of the persistent vulnerabilities. Decan et
al. [25] reviewed the SemVer compliance in 4 popular package
managers and summarized guidance for developers to better
comply with SemVer. These works highlight the limitations of

dependency versioning in modern ecosystems, including the
lack of flexibility in dependency management within Maven.
As a solution, we proposed Ranger to restore the flexibility of
version ranges within the Maven ecosystem.

VIII. CONCLUSION

In order to find a solution that addresses ecosystem-wide
persistent vulnerabilities, we conducted an empirical study that
revealed that 58.73% of vulnerabilities still impacted more
than 50% of downstream libraries in the Maven ecosystem
nowadays. Through this study, we quantitatively substantiated
that blocked patches caused the persistence of vulnerabilities.
The existing solutions are either not scalable or subject to
breaking changes. Hence, we proposed Ranger as a scalable
and automatic approach with compatibility assurance to un-
block the vulnerability patches. Through evaluation, Ranger
achieved 93.57% recall and restored 3, 109 (75.64%) ranges,
which remediated 10, 678 (90.32%) vulnerable downstream
projects.
• Data Availability. The experiment data set and algorithm
are available at our website [35].

ACKNOWLEDGMENTS

This study is supported under the RIE2020 Industry Align-
ment Fund – Industry Collaboration Projects (IAF-ICP) Fund-
ing Initiative, as well as cash and in-kind contribution from
the industry partner(s). This research is partially supported
by the National Research Foundation Singapore and DSO
National Laboratories under the AI Singapore Programme
(AISG Award No: AISG2-RP-2020-019), the NRF Investi-
gatorship NRF-NRFI06-2020-0001, the Ministry of Educa-
tion, Singapore under its Academic Research Fund Tier 3
(MOET32020-0004). Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the author(s) and do not reflect the views of the Ministry
of Education, Singapore. This research/project is supported
by the National Research Foundation, Singapore, and the
Cyber Security Agency under its National Cybersecurity R&D
Programme (NCRP25-P04-TAICeN). Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore and Cyber Security
Agency of Singapore.

REFERENCES

[1] “Log4j Remote Code Execution,” https://www.netskope.com/blog/
cve-2021-44832-new-vulnerability-found-in-apache-log4j, 2021.

[2] “Google Open-source Insight,” https://blog.deps.dev/, 2023.
[3] “Log4j Vulnerability News,” https://www.securityweek.com/

one-year-later-log4shell-remediation-slow-painful-slog/, 2023.
[4] “Log4j Vulnerability News,” https://thenewstack.io/one-year-of-log4j,

2022.
[5] “Log4j Vulnerability News,” https://securityintelligence.com/articles/

log4j-vulnerability-changed-oss-cybersecurity/, 2023.
[6] “Log4j Vulnerability News,” https://asia.nikkei.com/Spotlight/

Datawatch/Cyberattacks-on-Japan-soar-as-hackers-target-vulnerabilities,
2023.

[7] “Log4j Vulnerability News,” https://www.cybersecuritydive.com/news/
cves-rise-2023-struggle-to-patch/641955/, 2023.

[8] “National vulnerability database,” https://nvd.nist.gov/, 2023.

[9] Y. Wu, Z. Yu, M. Wen, Q. Li, D. Zhou, and H. Jin, “Understanding the
threats of upstream vulnerabilities to downstream projects in the maven
ecosystem,” in 45th International Conference on Software Engineering,
2023, pp. 1–12.

[10] Q. Li, J. Song, D. Tan, H. Wang, and J. Liu, “Pdgraph: a large-scale
empirical study on project dependency of security vulnerabilities,” in
2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2021, pp. 161–173.

[11] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study of de-
pendency management and its security implications,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1513–1531.

[12] A. M. Mir, M. Keshani, and S. Proksch, “On the effect of transitivity
and granularity on vulnerability propagation in the maven ecosystem,”
arXiv preprint arXiv:2301.07972, 2023.

[13] C. Soto-Valero, A. Benelallam, N. Harrand, O. Barais, and B. Baudry,
“The emergence of software diversity in maven central,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2019, pp. 333–343.

[14] A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, and O. Barais,
“The maven dependency graph: a temporal graph-based representation
of maven central,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 344–348.

[15] D. Du, X. Ren, Y. Wu, J. Chen, W. Ye, J. Sun, X. Xi, Q. Gao, and
S. Zhang, “Refining traceability links between vulnerability and soft-
ware component in a vulnerability knowledge graph,” in International
Conference on Web Engineering. Springer, 2018, pp. 33–49.

[16] Y. Wang, P. Sun, L. Pei, Y. Yu, C. Xu, S.-C. Cheung, H. Yu, and Z. Zhu,
“Plumber: Boosting the propagation of vulnerability fixes in the npm
ecosystem,” IEEE Transactions on Software Engineering, 2023.

[17] N. Imtiaz, A. Khanom, and L. Williams, “Open or sneaky? fast or slow?
light or heavy?: Investigating security releases of open source packages,”
IEEE Transactions on Software Engineering, 2023.

[18] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2018, pp. 1–10.

[19] “Home - open source security foundation,” https://openssf.org/, 2023,
(Accessed on 02/12/2023).

[20] “ossf/wg-best-practices-os-developers: The best practices for oss de-
velopers working group is dedicated to raising awareness and educa-
tion of secure code best practices for open source developers.” https:
//github.com/ossf/wg-best-practices-os-developers, 2023, (Accessed on
02/12/2023).

[21] “Openssf scorecard,” https://securityscorecards.dev/\#
what-is-openssf-scorecard, 2023, (Accessed on 02/14/2023).

[22] S. Raemaekers, A. Van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the Maven repository,” in 2014
IEEE 14th International Working Conference on Source Code Analysis
and Manipulation. IEEE, 2014, pp. 215–224.

[23] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
and impact of breaking changes in the Maven repository,” Journal of
Systems and Software, vol. 129, pp. 140–158, 2017.

[24] P. Lam, J. Dietrich, and D. J. Pearce, “Putting the semantics into
semantic versioning,” in Proceedings of the 2020 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, 2020, pp. 157–179.

[25] A. Decan and T. Mens, “What do package dependencies tell us about
semantic versioning?” IEEE Transactions on Software Engineering,
vol. 47, no. 6, pp. 1226–1240, 2019.

[26] J. Dietrich, D. Pearce, J. Stringer, A. Tahir, and K. Blincoe, “Depen-
dency versioning in the wild,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
349–359.

[27] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying the
vulnerability propagation and its evolution via dependency trees in the
npm ecosystem,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 672–684.

[28] “Semantic Versioning,” https://semver.org, 2021.
[29] “Maven Version ranges,” https://maven.apache.org/enforcer/

enforcer-rules/versionRanges.html, 2023.
[30] “Maven Soft Version Constraint,” https://maven.apache.org/enforcer/

enforcer-rules/versionRanges.html, 2023.
[31] “Maven repositories,” https://mvnrepository.com/, 2023.

[32] “Github Security Advisory,” https://github.com/advisories, 2023.
[33] “Google Open-source Database,” https://docs.deps.dev/bigquery/v1,

2023.
[34] “Snyk Vulnerability Database,” https://security.snyk.io/, 2023.
[35] “Data set,” https://sites.google.com/view/ase23maven, 2023.
[36] A. Schroter, A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces

help developers fix bugs?” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). IEEE, 2010, pp. 118–121.

[37] “Gradle Dependency Constraint,” https://docs.gradle.org/current/
userguide/dependency constraints.html, 2023.

[38] “Ivy Dependency Override,” https://ant.apache.org/ivy/history/2.3.0/
ivyfile/dependencies.html, 2023.

[39] “Maven Versions,” https://maven.apache.org/pom.html, 2023.
[40] “Oracle Java Compatibility Documentation,” https://www.oracle.com/

java/technologies/javase/8-compatibility-guide.html, 2023.
[41] “revapi,” https://revapi.org/revapi-site/main/index.html, 2021.
[42] “japi-compliance-checker,” https://lvc.github.io/

japi-compliance-checker/, 2019.
[43] L. Zhang, C. Liu, Z. Xu, S. Chen, L. Fan, B. Chen, and Y. Liu,

“Has my release disobeyed semantic versioning? static detection based
on semantic differencing,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’22. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3551349.3556956

[44] “Soot spark,” https://www.sable.mcgill.ca/soot/doc/soot/options/
SparkOptions.html, 2023.

[45] L. Ochoa, T. Degueule, J.-R. Falleri, and J. Vinju, “Breaking bad?
semantic versioning and impact of breaking changes in Maven central,”
arXiv preprint arXiv:2110.07889, 2021.

[46] “Caret Ranges,” https://docs.npmjs.com/cli/v6/using-npm/semver#
caret-ranges-123-025-004, 2023.

[47] L. Zhang, C. Liu, Z. Xu, S. Chen, L. Fan, L. Zhao, J. Wu, and Y. Liu,
“Compatible remediation on vulnerabilities from third-party libraries for
java projects,” in Proceedings of the 45th International Conference on
Software Engineering, ser. ICSE ’23. IEEE Press, 2023, p. 2540–2552.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00212

[48] “Software Composition Analysis,” https://snyk.io/series/
open-source-security/software-composition-analysis-sca/, 2023.

[49] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, “Trusting a library:
A study of the latency to adopt the latest maven release,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 2015, pp. 520–524.

[50] R. G. Kulaa, C. De Rooverb, D. M. Germanc, T. Ishiob, and K. Inouea,
“Modeling library dependencies and updates in large super repository
universes.”

[51] R. G. Kula, C. De Roover, D. German, T. Ishio, and K. Inoue,
“Visualizing the evolution of systems and their library dependencies,”
in 2014 Second IEEE Working Conference on Software Visualization.
IEEE, 2014, pp. 127–136.

[52] F. Massacci and I. Pashchenko, “Technical leverage in a software ecosys-
tem: Development opportunities and security risks,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 1386–1397.

[53] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and D. Spinel-
lis, “Dismal code: Studying the evolution of security bugs,” in LASER
2013 (LASER 2013), 2013, pp. 37–48.

[54] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Sv-af—a security vulnera-
bility analysis framework,” in 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2016, pp. 219–229.

[55] L. Zhao, S. Chen, Z. Xu, C. Liu, L. Zhang, J. Wu, J. Sun, and Y. Liu,
“Software composition analysis for vulnerability detection: An empirical
study on Java projects,” in Proceedings of the 2023 31th acm sigsoft
international symposium on foundations of software engineering, 2023.

[56] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability identi-
fication in Android applications,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1695–
1707.

[57] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu, “Research
on third-party libraries in Android apps: A taxonomy and systematic
literature review,” IEEE Transactions on Software Engineering, 2021.

[58] J. Wu, Z. Xu, W. Tang, L. Zhang, Y. Wu, C. Liu, K. Sun, L. Zhao, and
Y. Liu, “Ossfp: Precise and scalable c/c++ third-party library detection

using fingerprinting functions,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2023, pp. 270–282.

[59] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu, and
S.-C. Cheung, “Do the dependency conflicts in my project matter?” in
Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2018, pp. 319–330.

