
Large-Scale Analysis of Framework-Specific Exceptions in
Android Apps

Lingling Fan1, Ting Su2∗, Sen Chen1, Guozhu Meng3,2

Yang Liu2, Lihua Xu1∗, Geguang Pu4∗, Zhendong Su5
1School of Computer Science and Software Engineering, East China Normal University, China
2School of Computer Science and Engineering, Nanyang Technological University, Singapore

3SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
4Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China

5Department of Computer Science, University of California, Davis, USA

{ecnujanefan,tsuletgo,ecnuchensen}@gmail.com,{gzmeng,yangliu}@ntu.edu.sg

lhxu@cs.ecnu.edu.cn,ggpu@sei.ecnu.edu.cn,su@cs.ucdavis.edu

ABSTRACT

Mobile apps have become ubiquitous. For app developers, it is a

key priority to ensure their apps’ correctness and reliability. How-

ever, many apps still suffer from occasional to frequent crashes,

weakening their competitive edge. Large-scale, deep analyses of

the characteristics of real-world app crashes can provide useful

insights to guide developers, or help improve testing and analysis

tools. However, such studies do not exist — this paper fills this gap.

Over a four-month long effort, we have collected 16,245 unique ex-

ception traces from 2,486 open-source Android apps, and observed

that framework-specific exceptions account for the majority of these

crashes. We then extensively investigated the 8,243 framework-

specific exceptions (which took six person-months): (1) identifying

their characteristics (e.g., manifestation locations, common fault

categories), (2) evaluating their manifestation via state-of-the-art

bug detection techniques, and (3) reviewing their fixes. Besides the

insights they provide, these findings motivate and enable follow-up

research on mobile apps, such as bug detection, fault localization

and patch generation. In addition, to demonstrate the utility of

our findings, we have optimized Stoat, a dynamic testing tool, and

implemented ExLocator, an exception localization tool, for Android

apps. Stoat is able to quickly uncover three previously-unknown,

confirmed/fixed crashes in Gmail and Google+; ExLocator is capa-

ble of precisely locating the root causes of identified exceptions in

real-world apps. Our substantial dataset is made publicly available

to share with and benefit the community.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

∗Ting Su, Lihua Xu and Geguang Pu are the corresponding authors. Lingling Fan and
Ting Su contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180222

KEYWORDS

Empirical study, mobile app bugs, testing, static analysis

ACM Reference Format:

Lingling Fan, Ting Su, SenChen, GuozhuMeng, Yang Liu, Lihua Xu, Geguang

Pu, Zhendong Su. 2018. Large-Scale Analysis of Framework-Specific Excep-

tions in Android Apps. In ICSE ’18: ICSE ’18: 40th International Conference

on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3180155.3180222

1 INTRODUCTION

Mobile applications have gained great popularity in recent years.

For example, Google Play, the most popular Android market, has

over three million apps, and more than 50,000 apps are continuously

published on it each month [6]. To ensure competitive edge, app

developers and companies strive to deliver high-quality apps. One

of their primary concerns is to prevent fail-stop errors, such as app

crashes from occuring in release versions.

Despite the availability of off-the-shelf testing platforms (e.g.,

Roboelectric [76], JUnit [50], Appium [7]), and static checking tools

(e.g., Lint [31], FindBugs [23], SonarQube [82]) [51, 53], many re-

leased apps still suffer from crashes — two recent efforts [63, 85]

discovered hundreds of previously unknown crashes in popular

and well-tested commercial apps. Moreover, researchers have con-

tributed a line of work [3, 5, 10, 17, 43, 44, 60, 61, 63, 83–85, 88, 91]

to detect app crashes, but none of them have investigated the root

causes. It leaves developers unaware of how to avoid and fix these

bugs, and hinders the improvement of bug detection, fault localiza-

tion [48, 66, 81, 90], and fixing [25] techniques. As observed by our

investigation on 272,629 issues from 2,174 Android apps hosted on

Github and Google Code, developers are unable to resolve nearly

40% reported crashes,1 which greatly compromises app quality.

This situation underlines the importance of characterizing a

large number of diverse real-world app crashes and investigating

how to effectively detect and fix them. However, such a study is

difficult and yet to be carried out, which has motivated this work.

When an app crashes, the Android runtime system will dump

an exception trace that provides certain clues of the issue (e.g., the

exception type, message, and the invoked methods). Each excep-

tion can be classified into one of three categories — application

exception, framework exception, and library exception — based on

1Filtered by the keywords “crash” or “exception” in their issue descriptions.

408

2018 ACM/IEEE 40th International Conference on Software Engineering

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

which architecture layer threw the exception. In particular, our

study focuses on framework exceptions, which account for major-

ity of app crashes (affecting over 75% of the projects), as revealed

by our investigation in Section 4.1.

We face two key challenges in carrying out the study. The first is

the lack of comprehensive dataset. To enable crash analysis, we need

a comprehensive set of crashes from a large number of real-world

apps. Ideally, for each crash, it includes exception trace, buggy

source code, bug-triggering inputs, and the patches (if exists). How-

ever, to the best of our knowledge, no such dataset is publicly

available. Despite open-source project hosting platforms maintain

issue repositories, such as Github, our investigation reveals only

a small set of crash issues (16%) are accompanied with exception

traces. Among them, even if the issue is closed, it is not necessar-

ily associated with the buggy code version. The second concerns

difficulties in crash analysis. Analyzing crashes needs understand-

ing of the application logic as well as the Android framework (or

libraries). It is also necessary to cross-validate the root causes (e.g.,

reproducing crashes, investigating knowledge from developers).

However, no reliable tool exists that can facilitate our analysis.

To overcome these challenges and conduct this study, we made

substantial efforts.We have collected 16,245 unique exception traces

from 2,486 open-source Android apps by (1) mining their issue

repositories hosted on Github and Google Code; and (2) applying

state-of-the-art app testing tools (Monkey [34], Sapienz [63], and

Stoat [85]) on their recent versions (corresponding to 4,560 exe-

cutables) to complement the mined data. The whole data collection

process took four months. We identified 8,243 unique framework

exceptions, and spent nearly six person-months carefully inves-

tigating these crashes by examining the source code of apps and

the Android framework, fixes from developers, bug reports from

testing tools, and technical posts on Stack Overflow. We aim to

answer the following research questions:

• RQ1: Compared with other exception categories, are framework

exceptions recurring that affect most Android apps?

• RQ2:What are the common faults made by developers that cause

framework exceptions?

• RQ3: What is the current status of bug detection techniques on

detecting framework exceptions? Are they effective?

• RQ4: How do developers fix framework exceptions? Are there any

common practices? What are the difficulties for fixing?

Through answering the above questions, we aim to characterize

Android app crashes (caused by framework exceptions in particular)

and provide useful findings to developers as well as researchers. For

example, our investigation reveals framework exceptions are indeed

recurring. Moreover, they require more fixing efforts (on average

4 days per exception) but have lower issue closing rate (only 53%)

than application exceptions (67%). Through careful inspection, we

distilled 11 common faults that developers are most likely to make,

yet have not been well-investigated by previous work [18, 45, 92].

We further evaluate the detection abilities of current dynamic

testing and static analysis techniques on framework exceptions.

We are surprised to find static analysis tools are almost completely

ineffective (only gives correct warnings on 4 out of total 77 excep-

tion instances), although there are some plausible ways to improve

them. Dynamic testing tools, as expected, can reveal framework

exceptions, but still far from effective on certain fault categories.

Their testing strategies have a big impact on the detection ability.

In addition, we find most exceptions can be fixed by four common

practices with small patches (less than 20 code lines), but developers

still face several challenges during fixing.

Our findings enables several follow-up research, e.g., bug de-

tection, fault localization, and patch generation for android apps.

To demonstrate the usefulness of our findings, we have optimized

Stoat, a dynamic testing tool, and implemented ExLocator, an excep-

tion localization tool, for android apps. The results are promising:

Stoat quickly revealed 3 previously unknown bugs in Gmail and

Google+; ExLocator is able to precisely localize the root causes of

identified exceptions in real apps.

To summarize, this paper makes the following contributions:

• To our knowledge, we conducted the first large-scale study to

characterize framework-specific exceptions in Android apps, and

identified 11 common fault categories that developers are most

likely to make. The results provide useful insights for developers

and researchers.

• Our study evaluated the state-of-the-art exception detection

techniques, and identified common fixing practices of framework

exceptions. The findings shed light on proposing more effective

bug detection and fixing techniques.

• Our findings enable several follow-up research with a large-scale

and reusable dataset [21] that contains 16,245 unique exception

traces from 2,486 open-source apps. Our prototype tools also

demonstrate the usefulness of our findings.

2 PRELIMINARY

2.1 Existing Fault Study

Researchers have investigated Android and Symbian OSes’ fail-

ures [62] and Windows Phone app crashes [75]. As for the bugs of

Android apps, a number of studies exist in different aspects: perfor-

mance [55], energy [11], fragmentation [89], memory leak [78, 79],

GUI failures [1, 4], resource usage [54, 56], API stability [64], se-

curity [20, 65] and etc. However, none of them focus on functional

bugs, which are also critical to user loyalty and app success. Our

work focuses on this scope.

One of the first attempts at classifying functional bugs is from

Hu et al. [45]. They classify 8 bug types from 10 apps. Other ef-

forts [18, 92], however, have different goals: Coelho et al. [18] ana-

lyze exceptions to investigate the bug hazards of exception-handling

code (e.g., cross-type exception wrapping), Zaeem et al. [92] study

bugs to generate testing oracles for a specific set of bug types. None

of them give a comprehensive analysis, and the validity of their con-

clusions are unclear. Therefore, to our knowledge, we are the first

to investigate Android app crashes, and give an in-depth analysis.

Our study focuses on the framework-specific exceptions (frame-

work exception for short throughout the paper) that can crash apps,

i.e., those exceptions thrown from methods defined in the Android

framework due to an app’s violation of constraints enforced by

the framework. Note we do not consider the framework excep-

tions caused by the bugs of the framework itself. We do not analyze

application exceptions (leave this as our future work) and library ex-

ceptions (since different apps may use different third-party libraries

whose analysis requires other information).

409

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

2.2 Exception Model in Android

Android apps are implemented in Java, and thus inherit Java’s excep-

tionmodel. Java has three kinds of exceptions. (1) RuntimeException,
the exceptions that are thrown during the normal operation of the

Java Virtual Machine when the program violates the semantic con-

straints (e.g., null-pointer references, divided-by-zero errors). (2)

Error, which represents serious problems that a reasonable ap-

plication should not try to catch (e.g., OutOfMemeoryError). (3)
Checked Exception (all exceptions except (1) and (2)), these ex-

ceptions are required to be declared in a method or constructor’s

throws clause (statically checked by compilers), and indicate the

conditions that a reasonable client program might want to catch.

For RuntimeException and Error, the programmers themselves

have to handle them at runtime.

Figure 1 shows an example of RuntimeException trace. The bot-
tom part represents the root exception, i.e., NumberFormatException,
which indicates the root cause of this exception. Java uses excep-

tion wrapping, i.e., one exception is caught and wrapped in another

(in this case, the RuntimeException of the top part), to propagate

exceptions. Note the root exception can be wrapped by multiple

exceptions, and the flow from the bottom to the top denotes the

order of exception wrappings. An exception signaler is the method

(invalidReal in this case) that throws the exception, which is the

first method call under the root exception declaration .

java.lang.RuntimeException: Unable to resume activity {*}:
java.lang.NumberFormatException: Invalid double: “”

at android.app.ActivityThread.performResumeActivity(…)
….

Caused by: java.lang.NumberFormatException: Invalid double:“”
at java.lang.StringToReal.invalidReal(StringToReal.java:63)
at java.lang.StringToReal.parseDouble(StringToReal.java:248)
….

Figure 1: An example of RuntimeException trace

3 OVERVIEW

Figure 2 shows the overview of our study. We select F-droid [41]

apps as our subjects (Section 3.1), and use two methods, i.e., mining

issue repositories and applying testing tools, to collect exception

traces (Section 3.2). We investigate exception traces and other re-

sources (e.g., Android documentation, app source code, Stack Over-

flow posts) to answer RQ1∼RQ4 (Section 4). This study enables

several follow-up research detailed in Section 5.

3.1 App Subjects

We choose F-droid, the largest repository of open-source Android

apps, as the source of our study subjects, since it has three important

characteristics: (1) F-droid contains a large set of apps. At the time

of our study, it has more than 2,104 unique apps and 4,560 different

app versions, and maintains their metadata (e.g., source code links,

release versions). (2) The apps have diverse categories (e.g., Internet,

Personal, Tools), covering different maturity levels of developers,

which are the representatives of real-world apps. (3) All apps are

open-source and hosted on Github, Google Code, SourceForge and

etc, which makes it possible for us to access their source code and

issue repositories for analysis.

3.2 Data Collection

Table 1 summarizes the statistics of the collected exception traces.

We also collect other data for analysis from Stack Overflow and

static analysis tools. The details are explained as follows.

Table 1: Statistics of collected crashes

Approach #Projects #Crashes #Unique Crashes

Hosting Platforms
(Github/Google Code)

2174
(2035/137)

7764
(7660/104)

6588
(6494/94)

Testing Tools
(Monkey/Sapienz/Stoat)

2104
(4560 versions)

13271
(3758/4691/4822)

9722
(3086/4009/3535)

Total 2486 (1792 overlap) 21035 16245

Github and Google Code. We collected exception traces from

Github and Google Code since they host over 85% (2,174/2,549)

F-droid apps. To automate data collection, we implemented a web

crawler to automatically crawl the issue repositories of these apps,

and collected the issues that contain exception traces. In detail,

the crawler visits each issue and its comments to extract valid

exception traces. Additionally, it utilizes Github and Google Code

APIs to collect project information such as package name, issue id,

number of comments, open/closed time. We took about two weeks

and successfully scanned 272,629 issues from 2,174 apps, and finally

mined 7,764 valid exception traces (6,588 unique) from 583 apps.

Automated Testing Tools.We set up as follows: (1)We chose three

state-of-the-art Android app testing tools with different testing

techniques: Google Monkey [34] (random testing), Sapienz (search-

based testing), and Stoat (model-based testing). (2) We selected

all the recent release versions (total 4,560 versions of 2,104 apps,

each app has 1∼3 recent release versions) maintained by F-droid as

testing subjects. Each tool is configured with default setting and

given 3 hours to thoroughly test each version on a single Android

emulator. Each emulator is configured with KitKat Android OS

(SDK 4.3.1, API level 18). The evaluation is deployed on three phys-

ical machines (64-bit Ubuntu/Linux 14.04). Each machine runs 10

emulators in parallel. (3) We collect coverage data by Emma [77] or

JaCoCo [42] to enable the testing of Sapienz and Stoat.

The evaluation took fourmonths, and finally detected total 13,271

crashes (9,722 unique). In detail, Monkey detected 3,758 crashes

(3,086 unique), Sapienz 4,691 crashes (4,009 unique), Stoat 4,822

crashes (3,535 unique). During testing, we record each exception

trace with bug-triggering inputs, screenshots and detection time

and etc, to help our analysis. Further. we find the issue repositories

of Github/Google Code only record 545 unique crashes for these

recent versions, which accounts for only 5.6% of those detected

by testing tools. This indicates these detected exception traces can

effectively complement the mined exceptions.

Stack Overflow. According to exception traces mined from the

two sources above, we also collect the most relevant posts on Stack

Overflow by searching posts with key word “Android”, exception

types and detailed descriptions. We record information like create

time, number of answers, question summary. We mined totally

15,678 posts of various exceptions.

Static Analysis Tools. We also collect data from four state-of-the-

art static analysis tools (Lint, PMD, FindBugs, SonarQube), which

either serves as a plug-in of Android Studio or supports Android

projects. We apply each tool on apps to collect potential bugs,

warnings or code smells for in-depth analysis.

410

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

F-Droid

Apks

Projects

Testing

(Monkey, Sapienz, Stoat)

crash issues &
comments

Crash
reports

(a) Data Collection

Crawling

RQ1

RQ3

RQ2

(b) Crash Analysis (c) Application

Exception Category
Analysis

Android doc.
& Java spec. Project source code

Exception category
Exception-prone module

Bug Detection
Enhancement

Bug Fixing
Analysis

Bug Detection
Tool Evaluation

Root Cause
Analysis

RQ4

Taxonomy of crash
Root cause pattern

Detection capabilities
Detection cost

Fixing pattern
Fixing effort

Proof of
Concept

Fixing
patches

+
Root Cause

Localization

Crash Benchmark

Exception Traces

Buggy source code

Bug-triggering inputs

Exception fixes

Stack Overflow posts

Figure 2: Overview of our study and its applications

4 EMPIRICAL STUDY

4.1 RQ1: Exception Categories

Exception Categories. To investigate app crashes, we group their

exception traces into three different categories according to their

exception signalers. In detail, we refer to Android-18 API documen-

tation [26] and use the rules below (adopted by prior work [18]) to

categorize exceptions: (1) Application Exception: the signaler is from

the app itself (identified by the app’s package name). (2) Frame-

work Exception: the signaler is from the Android framework, i.e.,

from these packages: “android.*”, “com.android.*”, “java.*”,
and “javax.*”. (3) Library Exception: the signaler is from the core

libraries reused by Android (e.g., “org.apache.*”, “org.json.*”,
“org.w3c.*” and etc) or third-party libraries used by the app.

Table 2: Statistics of the exceptions from Github and Google

Code grouped by their signalers (M: Median)

Exception
Category

#Projects Occurences #Types
Issue

Duration
M (Q1/Q3)

Fixing
Rate

App 268 (45.8%) 1552 (23.6%) 88 (34%) 2 (0/17) 67%
Framework 441 (75.3%) 3350 (50.8%) 127 (50%) 4 (1/30) 53%
Library 253 (43.2%) 1686 (25.6%) 132 (52%) 3 (1/16) 57%

Table 2 classifies the exceptions from Github and Google Code

according to the above rules, and shows the number of their affected

projects, occurrences, number of exception types, issue durations

(the days during the issue was opened and closed), and the fixed

issue rate (the percentage of closed issues). From the table, we

observe two important facts: (1) Framework exceptions are more

pervasive and recurring. It affects 75.3% projects, and occupies 50.8%

exceptions. (2) Framework exceptions require more fixing effort. On

average, it takes 2 more times effort (see column 5) to fix a frame-

work exception than an application exception

These facts are reasonable. First, most apps heavily use APIs

provided by Android Development Framework (ADF) to achieve

their functionalities. ADF enforces various constraints to ensure

the correctness of apps, however, if violated, apps may crash and

throw exceptions. Second, fixing application exceptions is relatively

easy since developers are familiar with the code logic. However,

when fixing framework exceptions, they have to understand and

locate the constraints they violate, which usually takes longer.

Locations of Framework Exception Manifestation. To further

understand framework exceptions, we group them by the class

names of their signalers. In this way, we get more than 110 groups.

To distill our findings, we further group these classes into 17 mod-

ules. A module is used to achieve either one general purpose or

stand-alone functionality from the perspective of developers. We

group the classes that manage the Android application model,

e.g., Activities, Services, into App Management (corresponding to

android.app.*); the classes that manage app data from content

provider and SQLite intoDatabase (android.database.*); the classes
that provide basic OS services, message passing and inter-process

communication into OS (android.os.*). Other modules include

Widget (UI widgets), Graphics (graphics tools that handle UI draw-

ing), Fragment (one special kind of activity), WindowsManager

(manage window display) and etc.

Figure 3: Exception-proneness of Android modules for

framework exceptions (M. refers to Management)

Figure 3 shows the exception-proneness of these modules across

all apps. We find App Management, Database and OS are the top

3 exception-prone modules. In App Management, the most com-

mon exceptions are ActivityNotFound (caused by no activity is

found to handle the given intent) and IllegalArgument (caused by
improper registering/unregistering Broadcast Receiver in the

activity’s callbacks) exceptions. Although Activity, Broadcast
Receiver and Service are the basic building blocks of apps, sur-
prisingly, developers make the most number of mistakes on them.

As forDatabase, the exceptions of SQLite (e.g., SQLiteException,
SQLiteDatabaseLocked, CursorIndexOutOfBounds) account for
the majority, which reflects the various mistakes of using SQLite. In

OS, SecurityException, IllegalArgument, NullPointer are the
most common ones. As for the other modules, there are also interest-

ing findings: (1) improper use of ListView with Adapter throws a

large number of IllegalState exception (account for 47%) inWid-

get; (2) improper use of Bitmap causes OutOfMemoryError (48%)

411

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

in Graphics; (3) improper handling callbacks of Fragment brings

IllegalState (85%) in Fragment; improper showing or dismissing

dialogs triggers BadTokens (25%) inWindowManager.

Answer to RQ1: Framework exceptions are pervasive, among

which App Management, Database and OS are the three most

exception-prone modules for developers.

4.2 RQ2: Taxonomy of Framework Exceptions

This section investigates framework exceptions. We classify them

into different categories by their root causes. Root cause, from the

view of developers, is the initial cause of the exception.

Exception Buckets. Following the common industrial practice, we

group framework exceptions into different buckets. Each bucket

contains the exceptions that share the similar root cause. To achieve

this, we use the exception type, message and signaler to approxi-

mate the root cause. For example, the exception in Figure 1 is labeled

as (NumberFormatException, “invalid double”, invalidReal). Fi-
nally, we get 2,016 buckets, and find the exceptions from the top

200 buckets have occupied over 80% of all exceptions. The remain-

ing 20% buckets have only 5 exceptions or fewer in each of them.

Therefore, we focus on the exceptions of the top 200 buckets.

Analysis Methods. We randomly select a number of exceptions

from each bucket, and use three complementary resources to fa-

cilitate root cause analysis: (1) Exception-Fix Repository. We set up

a repository that contains pairs of exceptions and their fixes. In

particular, (i) from 2,035 Android apps hosted on Github, we mined

284 framework exception issues that are closed with corresponding

patches. To set up this mapping, we checked each commit message

by identifying the keywords “fix”/“resolve”/“close” and the issue id.

(ii) We also manually checked the remaining issues to include valid

ones that are missed by the keyword rules. We finally got 194 valid

issues. We investigate each exception trace and its patch to under-

stand the root causes. (2) Exception Instances Repository. From the

9,722 exceptions detected by testing tools, we filtered out the frame-

work exceptions, and mapped each of them with its exception trace,

source code version, bug-triggering inputs and screenshots. When

an exception type under analysis is not included or has very few

instances in the exception-fix repository, we refer to this repository

to facilitate analysis by using available reproducing information.

(3) Technical Posts. For each exception type, we referred to the posts

from Stack Overflow collected in Section 3.2 when needing more

information from developers and cross-validate our understanding.

Taxonomy. We analyzed 86 exception types2 (covering 84.6% of all

framework exceptions), and finally distilled 11 common faults that

developers are most likely to make. Table 3 lists them by the order

of closing rate from highest to lowest. We explain them as follows.
• Component Lifecycle Error. Android apps are comprised of dif-

ferent components. Each component is required to follow a pre-

scribed lifecycle paradigm, which defines how the component is

created, used and destroyed [39]. For example, Activity provides

a core set of six callbacks to allow developers to know its cur-

rent state. If developers improperly handle the callbacks or miss

state checking before some tasks, the app can be fragile consid-

ering the complex environment interplay (e.g., device rotation,

2After the investigation on a number of NullPointerExceptions, we find most of
them are triggered by null object references. So we did not continue to analyze them.

Figure 4: An Example of Lifecycle Error

Figure 5: An Example of Concurrency Error

Figure 6: An Example of UI Update Error

network interrupt). Bankdroid [12] (Figure 4) is an app for pro-

viding service of Swedish banks. The app uses a background thread

DataRetrieverTask to perform data retrieval, and pops up a dialog

when the task is finished. However, if the user edits and updates a

bank from BankEditActivity (which starts DataRetrieverTask),
during which he presses the back button, the app will crash when

the updates finish. The reason is that the developers fail to check

BankEditActivity’s state (in this case, destroyed) after the task

is finished. The bug triggers a BadTokenException and was fixed

in revision 8b31cd3 [13]. Besides, Fragment [28], a reusable class
implementing a portion of Activity, has much more complex

lifecycle. It provides a core set of 12 callbacks to manage its state

transition, which makes lifecycle management more challenging,

e.g., state loss of Fragments, attachment loss from its activity.
• Concurrency Error. Android system provides such concurrent

programming constructs as AsyncTask and Thread to execute in-

tensive tasks. However, improper handling concurrent tasks may

bring data race [14] or resource leak [54], and even cause app

crashes. Nextcloud Notes [71] (Figure 5), a cloud-based notes-taking

app that automatically synchronizes local and remote notes, when

the app attempts to re-open an already-closed database [72]. The

exception can be reproduced by executing these two steps repeat-

edly: (1) open any note from the list view; (2) close the note as

quickly as possible by pressing back-button. The app creates a new

412

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

Figure 7: An Example Violating Framework Constraints

NoteSyncTask every time when a note sync is requested, which

connects with the remote sever and updates the local database by

calling updateNote(). However, when there are multiple update

threads, such interleaving may happen and crash the app: Thread

A is executing the update, and Thread B gets the reference of the

database; Thread A closes the database after the task is finished,

and Thread B tries to update the closed database. The develop-

ers fixed this exception by leaving the database unclosed (since

SQLiteDatabase already implemented thread-safe database access

mechanism) in revision aa1a972 [73].
• UI Update Error. Each Android app owns a UI thread, which is

in charge of dispatching events and rendering user interface. To

ensure good responsiveness, apps should offload intensive tasks

to background threads. However, many developers fail to keep

in mind that Android UI toolkit is not thread-safe and one should

not manipulate UI from a background thread [37]. cgeo [15] (Fig-

ure 6) is a popular full-featured client for geocaching. When re-

freshing cacheList (cacheList is associated with a ListView via

an ArrayAdapter), the developers query the database and sub-

stitute this list with new results (via clear() and addAll()) in
doInbackground. However, the app crashes when the list is re-

freshed. The reason is that cacheList is maintained by the UI

thread, which internally checks the equality of item counts be-

tween ListView and cacheList. But when a background thread

touches cacheList, the checking will fail and an exception will

be thrown. The developer realized this, and fixed it by moving the

refreshing operations into onPostExecute, which instead runs in

the UI thread (in revision d6b4e4d [16]).
• Framework Constraint Error. Android framework enforces var-

ious constraints for app development. For example, Handler is

part of Android framework for managing threads, which allows to

send and process messages or runnable objects associated with a

thread’s message queue [29]. Each Handler instance must be associ-

ated with a single thread and the message queue of this thread3. Other-

wise, a runtime exception will be thrown. Local-GSM-Backend [57]

(Figure 7), a popular cell-tower based location lookup app, uses

a thread worker to monitor the changes of telephony states via

PhoneStateListener. However, the developers are unaware that
PhoneStateListener internally maintains a Handler instance to
deliver messages [36], and thus requires setting up a message loop

in worker. They later fixed it by calling Looper#prepare() (in

revision 07e4a759 [58]). Other constraints include performance

3A thread by default is not associated with a message queue; to create it,
Looper#prepare() should be called in the thread [32].

Figure 8: An Example of Database Management Error

consideration (avoid performing network operations in the main UI

thread [35], permission consideration (require run-time permission

grant for dangerous permissions [38] since Android 6.0, otherwise

SecurityException) and etc.
• Database Management Error. Improper manipulating database

columns/tables causes many exceptions. Besides this, improper data

migration for version updates is another major reason. Atarashii [8]

(Figure 8) is a popular app for managing the reading and watching

of anime. When the user upgrades from v1.2 to v1.3, the app crashes

once started. The reason is that the callback onCreate() is only

called if no old version database file exists, so the new database

table friends is not successfully created when upgrading. Instead,

onUpgrade() is called, it crashes the app because the table friends

does not exist (fixed in revision b311ec3 [9]).
• API Updates and Compatibility. Android system is evolving

fast. API updates and implementation (e.g., SDKs, core libraries)

changes can affect the robustness of apps. Device fragmentation [89]

aggravates this problem. For example, Service should be started ex-
plicitly since Android 5.0; the change of the comparison contract of

Collections#sort() [47] since JDK 7 crashes several apps since

the developers are unaware of this.
•Memory/Hardware Error. Android devices have limited resources

(e.g., memory). Improper using of resources may bring exceptions.

For example, OutOfMemoryError occurs if loading too large Bitmaps;

RuntimeException appearswhen MediaRecorder#stop() is called
but no valid audio/video data is received.
• XML Design Error. Android supports UI design and resource

configuration in the form of XML files. Although IDE tools have

provided much convenience, mistakes still exist, e.g., misspelling

custom UI control names, forgetting to escape special characters

(e.g., “$”, “%”) in string texts, failing to specify correct resources in

colors.xml and strings.xml.
• API Parameter Error. Developers make this type of mistakes

when they fail to consider all possible input contents or formats,

and feed malformed inputs as the parameters of APIs. For example,

they tend to directly use the results from SharedPreference or

database queries without any checking.
• Resource Not Found Error. Android apps heavily use external

resources (e.g., databases, files, sockets, third-party apps and li-

braries) to accomplish tasks. Developers make this mistake when

they ignore checking their availability before use.
• Indexing Error. Indexing error happens when developers access

data, e.g., database, string, and array, with a wrong index value. One

413

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 3: Statistics of 11 common fault categories, and the evaluation results of static analysis tools on them, sorted by closing

rate in descending order.

Category (Name for short) Occurrence #S.O. posts #Instance
Static Tools Closing

RateLint FindBugs PMD SonarQube

API Updates and Compatibility (API) 68 60 7 - - - - 93.3%
XML Layout Error (XML) 122 246 4 1 - - - 93.2%
API Parameter Error (Parameter) 820 819 6 - - - - 88.5%
Framework Constraint Error (Constraint) 383 1726 12 3 - - - 87.7%
Others (Java-specific errors) 249 4826 10 - - - - 86.1%
Index Error (Index) 950 218 4 - - - - 84.1%
Database Management Error (Database) 128 61 3 - - - - 76.8%
Resource-Not-Found Error (Resource) 1303 7178 5 - - - - 75.3%
UI Update Error (UI) 327 666 3 - - - - 75.0%
Concurrency Error (Concurrency) 372 263 7 - - - - 73.5%
Component Lifecycle Error (Lifecycle) 608 1065 11 - - - - 58.8%
Memory/Hardware Error (Memory) 414 792 3 - - - - 51.6%

typical example is the CursorIndexOutOfBounds exception caused

by accessing database with incorrect cursor index.

In Table 3, column 2 and 3, respectively, counts the occurrences of

each category and the number of StackOverflow posts on discussing

these faults; column 4 shows the number of distinct exception types

of each category (total 75 instances). We find that (1) Besides the

“trivial" errors such as Resource-Not-Found Error, Index Error and

API Parameter Error, app developers are more likely to make An-

droid specific errors, e.g., Lifecycle Error, Memory/Hardware Error,

Android Framework Constraint Error. (2) developers also discuss

more on Android Framework Constraint Error, Lifecycle Error and

API Parameter Error. Additionally, we find existing mutation opera-

tors [19, 52] designed for detecting app bugs can cover only a few of

these 75 instances. Deng et al.’s 11 operators [19] can only detect 2

instances (the remaining ones detect UI and event handling failures

instead of fatal crashes); MDroid+ [52] proposes 38 operators, but

can only cover 8 instances.

Answer to RQ2:We distilled 11 fault categories that explain why

framework exceptions are recurring. Among them, developers make

more mistakes on Lifecycle Error, Memory/Hardware Error and

Android Framework Constraint Error. Existing mutation operators

are inadequate for detecting these errors.

4.3 RQ3: Auditing Bug Detection Tools

Dynamic testing and static analysis are the two main avenues to

help detect software bugs. This section investigates the detection

abilities of these two techniques on framework exceptions (catego-

rized in Section 4.2). In particular, we select three state-of-the-art

testing tools, i.e., Monkey, Sapienz, and Stoat; and four static analy-

sis tools widely used by android developers [53], i.e., Lint, FindBugs,

PMD, and SonarQube. Lint, developed by Google, detects code struc-

tural problems, and scans for android-specific bugs [27]. PMD uses

defect patterns to detect bad coding practices. FindBugs, provided

as a plugin in Android Studio, also enforces various checking rules,

and adopts control- and data-flow analysis to scan potential bugs

(e.g., null-pointer dereferences). SonarQube is a continuous code

quality platform that provides bug reports for suspicious code.

Static Analysis Tools. We randomly select 75 distinct exception

instances (corresponding to column 4 in Table 3) from Github that

cover all manifestations of root faults, and checkout the correspond-

ing buggy code version to investigate how many of them can be

detected by static analysis tools. Our investigation finds static tools

specialize in detecting bad practices, code smells, and potential bugs

that may lead to severe errors, but with a mass of false alarms.

As shown in Table 3, FindBugs, PMD, and SonarQube fail to

report any warnings on these bugs. Lint only identifies 4 out of 75

bugs, which include one XML error (the resource file “string.xml”

contains an illegal character “$”) and three framework constraint

errors (duplicate resource ids within a layout file; Fragment cannot

be instantiated; using the wrong AppCompat method). In addition,

although these tools claim to support android projects, we have

not found any android-specific rules in FindBugs and SonarQube,

and only three android rules [74] in PMD. Lint defines 281 android

rules [27] but detects only a few bugs. Therefore, the current static

analysis tools focus more on basic Java defects, and much less

effective in detecting framework exceptions of Android apps.

Dynamic Testing Tool. We apply testing tools on each app (total

2,104) with the same configuration in Section 3.2. As we observed,

they can detect many framework exceptions. To understand their

abilities, we use two metrics4. (1) detection time (the time to detect

an exception). Since one exception may be found multiple times, we

use the time of its first occurrence. (2) Occurrences (howmany times

an exception is detected during a specified duration). Figure 9 and

Figure 10, respectively, show the detection time and occurrences of

exceptions by each tool grouped by the fault categories.

Figure 9 shows concurrency errors are hard to detect for all

three tools (requiring longer time). But for other fault categories,

the time varies on different tools. For example, Sapienz is better

at database errors (since Sapienz implements a strategy, i.e., fill

strings in EditTexts, and then click “OK” instead of “Cancel” to

maximize code coverage, which is more likely to trigger database

operations); Monkey and Sapienz are better at lifecycle errors (since

both of them emit events very quickly without waiting the previous

ones to take effect, e.g., open and quickly close an activity without

waiting the activity finishes its task). Figure 10 shows it is easy for

three tools to detect API compatibility, Resource-Not-Found and

XML errors since the occurrences of these errors are much more

than those of the others. But for other categories, e.g., Concurrency,

Lifecyle, Memory, UI update errors, all of three tools are far from

4We have not presented the results of trace length, since we find the three tools cannot
dump the exact trace that causes a crash. Instead, they output the whole trace, which
cannot reflect their detection abilities.

414

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

Figure 9: Detection time of exceptions by each tool

Figure 10: Occurrences of exceptions by each tool

effective regardless of their testing strategies. The main reason is

that these errors contain non-determinism (interact with threads).

After an in-depth inspection, we find that some Database errors

are hard to trigger because the app has to construct an appropriate

database state (e.g., create a table or insert a row, and fill in specific

data) as the precondition of the bug, which may take a long time. As

for Framework Constraint errors, some exceptions require special

environment interplay. For example, InstantiationException of
Fragment can only be triggeredwhen a Fragment (without an empty

constructor) is destroyed and recreated. To achieve this, a testing

tool needs to change device rotation at an appropriate timing (when

the target Fragment is on the screen), or pause and stop the app by

switching to another one, and stay there for a long time (let Android

OS kill the app), and then return back to the app. Concurrency bugs

are hard to trigger since they usually need right timings of events.

Answer to RQ3: Existing static analysis tools are ineffective in

detecting framework exceptions. Dynamic testing tools are still

far from effective in detecting database, framework constraint and

concurrency errors.

4.4 RQ4: Fixing Patterns and Efforts

This section uses the exception-fix repository constructed in RQ2

(194 instances) to investigate the common practices of developers

to fix framework exceptions. We categorize their fixing strategies

by (1) the types of code modifications (e.g., modify conditions, reor-

ganize/move code, tweak implementations); (2) the issue comments

and patch descriptions. We finally summarized 4 common fix pat-

terns, which can resolve over 80% of the issues.
• Refine Conditional Checks. Missing checks on API parameters,

activity states, index values, database/SDK versions, external re-

sources can introduce unexpected exceptions. Developers usually

Figure 11: Example fixes by adding conditional checks

Figure 12: Example fixes by moving code into correct thread

fix them via adding appropriate conditional checks. For example,

Figure 11 (a) checks cursor index to fix CursorIndexOutOfBound,
Figure 11 (b) checks the state of the activity attached by a Frag-

ment to fix IllegalState, and Figure 11 (c) checks the input of an

EditText to fix NumberFormat. We find most of exceptions from

Parameter Error, Indexing Error, Resource Error, Lifecycle Error, and

API Error can be fixed by this strategy.
•Move Code into Correct Thread. Messing up UI and background

threads may incur severe exceptions. The common practice to fix

such problems is to move related code into correct threads. Figure 12

fixes CalledFromWrongThread by moving the code of modifying

UI widgets back to the UI thread (via Activity#runOnUiThread())
that creates them. Similar fixes include moving the showings of

Toast or AlertDialog into the UI thread instead of the background
thread since they can only be processed in the Looper of the UI

thread [24, 67]. Additionally, moving extensive tasks (e.g., network

access, database query) into background thread can resolve such

performance exceptions as NetworkOnMainThread and “Applica-

tion Not Responding" (ANR) [30].
•Work in Right Callbacks. Inappropriate handling lifecycle call-

backs of app components (e.g., Activity, Fragment, Service) can
severely affect the robustness of apps. The common practice to

fix such problems is to work in the right callback. For example, in

Activity, putting BroadcastReceiver’s register and unregister

into onStart() and OnStop() or onResume() and OnPause() can

avoid IllegalArgument; and committing a FragmentTransaction

415

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 13: Fixing Effort

before the activity’s state has been saved (i.e., before the callback

onSaveInstanceState()) can avoid state loss exception [59, 80].
• Adjust Implementation Choices. To resolve other exceptions,

developers have to adjust the implementation or do code refactor-

ing. For example, to fix OutOfMemory caused by loading Bitmap, the

common practice is to optimize memory usage by resizing the orig-

inal bitmap [33]; to fix data race exceptions, the common practice is

to adopt mutex locks (e.g., add synchronized to allow the execution

of only one active thread) or back up the shared data [70].

To further understand the characteristics of developer fixes, we

group these issues by their root causes, and compute three metrics:

(1) Issue Duration, which indicates how long the developers took to

fix the issue (Figure 13(a)); (2) Number of Changed Code Lines, i.e.,

the number of code lines5 the developers changed to fix this issue

(Figure 13(b)); and (3) Issue Closing Rate, i.e., how many issues have

been closed (the last column in Table 3). We can see that the fixes for

Parameter Error, Indexing Error, Resource Error, and Database Error

require fewer code changes (most patches are less than 20 lines).

Because most of them can be fixed by refining conditional checks.

We also note UI Error, Concurrency Error, and Memory/Hardware

Error require larger code patches.

Further, by investigating the discussions and comments of de-

velopers when fixing, we find three important reasons that reveal

the difficulties they face.
•Difficulty of Reproducing and Validation. One main difficulty

is how to reproduce exceptions and validate the correctness of

fixes [68]. Most users do not report complete reproducing steps/in-

puts and other necessary information (e.g., exception trace, device

model, code version) to developers. Even if the exception trace is

provided, reproducing such exceptions as non-deterministic ones

(e.g., concurrency errors) is rather difficult. In such cases, after fixing

the issue, they choose to leave it for the app users to validate before

closing the issue. As shown in Figure 13 and Table 3, concurrency

errors have longer issue durations and lower fixing rate.
• Inexperience with Android System. A good understanding of

Android system is essential to correctly fix exceptions. As the clos-

ing rates in Table 3 indicate, developers are more confused by

Memory/Hardware Error, Lifecycle Error, Concurrency Error, and

5To reduce “noises", we exclude comment lines (e.g., “//...”), annotation lines (e.g.,
“@Override”), unrelated code changes (e.g., “import *.*”, the code for new features).

UI Error. We find some developers use simple try-catch or compro-

mising ways (e.g., use commitAllowingStateLoss to allow activity

state loss) as workarounds. However, such fixes are often fragile.
• Fast Evolving APIs and Features. Android is evolving fast. As

reported, on average, 115 API updates occur each month [64]. More-

over, feature changes are continuously introduced. However, these

updates or changes may make apps fragile when the platform they

are deployed is different from the one they were built; and the devel-

opers are confused when such issues appear. For example, Android

6.0 introduces runtime permission grant — If an app uses danger-

ous permissions, developers have to get permissions from users at

runtime. However, we find several developers choose to delay the

fixing since they have not fully understand this new feature.

Answer toRQ4: Refining conditional checks, using correct thread

types, working in the right callbacks, adjusting implementation

choices are the 4 common fix practices. Memory/Hardware, Life-

cycle, Concurrency, and UI update Error are more difficult to fix.

4.5 Discussion

Through this study, we find: (1) Besides the trivial errors, developers

are most likely to introduce Lifecycle, Memory/Hardware, Concur-

rency, and UI update errors, which requires more fixing efforts.

(2) Bug detection tools need more enhancement. Static analysis

tools could integrate new rules especially for UI update, Lifecycle,

Framework Constraint errors. Testing tools could integrate specific

testing strategies to detect these errors. (3) To counter framework

exceptions, developers should gain more understanding on Android

system; different supporting tools should be developed to reproduce

exceptions for debugging, locate their root causes for fixing, and

check API compatibility across different SDKs.

Linares-Vásquez et al. [52] also investigated android app bugs

very recently, but our study significantly differs from theirs. We

focuses on framework exceptions and give a comprehensive, deep

analysis, including exception manifestations, root causes, abilities

of existing bug analysis tools, and fixing practices. While they focus

on designing mutation operators from existing bugs, and their 38

operators only cover 8 out of 75 instances distilled by our study. We

believe our results can further improve existing mutation operators.

The validity of our study may be subject to some threats. (1)

Representativeness of the subjects. To counter this, we collected all

the subjects (total 2486 apps at the time of our study) from F-Droid,

which the largest database of open-source apps, and covers diverse

app categories. We believe these subjects are the representatives of

real-world apps. (2) Comprehensiveness of app exceptions. To collect

a comprehensive set of exception traces, we mine from Github and

Google Code; and apply testing tools, which leads to total 16,245

exceptions. To our knowledge, this is the largest study for analyzing

Android app exceptions. (3) Completeness/Correctness of exception

analysis. For completeness, (i) we investigated 8,243 framework

exceptions, and carefully inspected all common exception types.

(ii) We surveyed previous work [2, 3, 14, 18, 22, 40, 45, 46, 60, 61, 63,

85, 92] that reported exceptions, and observed all exception types

and patterns were covered by our study. For correctness, we cross-

validated our analysis on each exception type, and also referred to

the patches from developers and Stack Overflow posts to validate

our analysis. The whole dataset is also made publicly available.

416

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

5 APPLICATIONS OF OUR STUDY

This section discusses the follow-up research motivated by our

findings, and also demonstrates usefulness by two prototype tools.

5.1 Benchmarking Android App Exceptions

Our study outputs a large and comprehensive dataset of Android

app exceptions (especially for framework exceptions), which in-

cludes total 16,245 unique app exceptions and 8,243 unique frame-

work exceptions. Each exception is accompanied with buggy code

version, exception trace, error category, and possible fixes. We be-

lieve this dataset can (1) provide an effective and reliable basis for

comparing dynamic/static analysis tools; (2) enable the research

on investigating fault localization techniques and give a large set

of exceptions as benchmarks; and (3) enable patch generation by

comparing the exceptions and their fixes.

5.2 Improving Exception Detection

Dynamic testing and static analysis are the two avenues to detect

faults. However, more improvements should be made on both sides.

Dynamic Testing. Enhancing testing tools to detect specific er-

rors is very important. For example, (1) Generate meaningful as

well as corner-case inputs to reveal parameter errors. We find ran-

dom strings with specific formats or characters are very likely

to reveal unexpected crashes. For instance, Monkey detects more

SQLiteExceptions than the other tools since it can generate strings
with special characters like “"” and “%” by randomly hitting the

keyboard. When these strings are used in SQL statements, they can

fail SQL queries without escaping. (2) Enforce environment interplay

to reveal lifecycle, concurrency and UI update errors. We find some

special actions, e.g., change device orientations, start an activity

and quickly return back without waiting it to finish, put the app at

background for a long time (by calling another app) and return back

to it again, can affect an app’s internal states and its component

lifecycle. Therefore, these actions can be interleaved with normal

UI actions to effectively check robustness. (3) Consider different app

and SDK versions to detect regression errors. We find app updates may

introduce unexpected errors. For example, as shown in Figure 8, the

changes of database scheme can crash the new version since the

developers have not carefully managed database migration from the

old version. (4) More advanced testing criteria [49, 86] are desired.

Static Analysis. Incorporating new checking rules into static anal-

ysis tools to enhance their abilities is highly valuable. Through our

study, we find it is feasible to check some framework exceptions,

especially for framework constraint, lifecycle and UI update errors.

For example, to warn the potential crash in Figure 7, static analysis

can check whether the task running in the thread uses Handler
to dispatch messages, if it uses, Looper#prepare() must be called

at the beginning of Thread#run(); to warn the potential crash in

Figure 4, static analysis can check whether there is appropriate

checking on activity state before showing a dialog from a back-

ground thread. In fact, there is already some initial work [40] that

implements lifecycle checking on Lint.

Demonstration of Usefulness. We enhanced Stoat [85] with two

strategies: (1) randomly generate inputs with 5 specific formats

(e.g., empty string, lengthy string, null) or characters (e.g., “"”, “%”)

to fill in EditTexts or Intent’s fields; (2) randomly inject 3 types

of special actions mentioned above into normal UI actions. We

applied Stoat on dozens of most popular apps (e.g., Facebook, Gmail,

Google+, WeChat) from Google Play, and successfully detected

3 previously unknown bugs in Gmail (one parameter error) and

Google+ (one UI update error and one lifecycle error). All of these

bugs were detected in the latest versions at the time of our study,

and have been reported to Google and got confirmed. However,

these bugs have not been found by Monkey and Sapienz, while

other testing tools, e.g., CrashScope [69] and AppDoctor [46] only

consider 2 and 3 of these 8 enhancement cases, respectively.

5.3 Enabling Exception Localization

We find developers usually take days to fix a framework exception.

Thus, automatically locating faulty code and proposing possible

fixes are highly desirable. Our study can shed light on this goal.

Demonstration of Usefulness. We have built a framework excep-

tion localization tool, ExLocator, based on Soot [87], which takes

as input an APK file and an exception trace, and outputs a report

that explains the root cause of this exception. It currently supports

5 exception types from UI update, Lifecycle, Index, and Framework

Constraint errors (As Figure 13 shows, these errors are more dif-

ficult to fix). In detail, it first extracts method call sequences and

exception information from the exception trace, and classifies the

exception into one of our summarized fault categories, and then uti-

lizes data-/control-flow analysis to locate the root cause. The report

gives the lines or methods that causes the exception, the description

of the root cause and possible fixing solutions, and closely related

Stack Overflow posts. We applied our tool on total 27 randomly

selected cases from Github, and correctly locates 25 exceptions out

of 27 (92% precision) by comparing with the patches by develop-

ers. By incorporating additional context information from Android

framework (e.g., which framework classes use Handler), our tool
successfully identified the root causes of the remaining two cases.

However, all previous fault localization work [48, 66, 81, 90] can

only handle general exception types.

6 CONCLUSION

This paper conducts a large-scale analysis of framework exceptions

in Android apps. We constructed a comprehensive dataset that

contains 16,245 unique exception traces. After investigating 8,243

framework exceptions, we identified their characteristics, evaluated

their manifestation via popular bug detection tools, and reviewed

their fixes. Our findings enables several follow-up research. We

demonstrated the usefulness of our findings by two prototype tools.

7 ACKNOWLEDGEMENTS

We appreciate the anonymous reviewers for their valuable feed-

back. This work is partially supported by NSFC Grant 61502170,

NTU Research Grant NGF-2017-03-033 and NRFGrant CRDCG2017-

S04. Lingling Fan is partly supported by ECNU Project of Fund-

ing Overseas Short-term Studies, Ting Su partially supported by

NSFC Grant 61572197 and 61632005, and Geguang Pu partially sup-

ported byMOSTNKTSP Project 2015BAG19B02 and STCSM Project

16DZ1100600. Zhendong Su is partially supported by United States

NSF Grants 1528133 and 1618158, and by a Google Faculty Research

Award.

417

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-

atic Execution of Android Test Suites in Adverse Conditions. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015).
ACM, New York, NY, USA, 83–93.

[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De
Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing
of Android applications. In IEEE/ACM International Conference on Automated
Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012. 258–261.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Software 32, 5 (2015), 53–59. https://doi.org/10.1109/MS.2014.
55

[4] Domenico Amalfitano, Vincenzo Riccio, Ana C. R. Paiva, and Anna Rita Fasolino.
2018. Why does the orientation change mess up my Android application? From
GUI failures to code faults. Softw. Test., Verif. Reliab. 28, 1 (2018).

[5] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Au-
tomated concolic testing of smartphone apps. In 20th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC,
USA - November 11 - 16, 2012. 59.

[6] AppBrain. 2017. Number of Android applications. (2017). Retrieved 2017-7 from
http://www.appbrain.com/stats/number-of-android-apps

[7] Appium. 2017. Appium: Mobile App Automation Made Awesome. (2017). Re-
trieved 2017-7 from http://appium.io/

[8] Atarashii. 2017. Atarashii. (2017). Retrieved 2017-7 from https://github.com/
AnimeNeko/Atarashii

[9] Atarashii. 2017. Atarashii revision b311ec3. (2017). Re-
trieved 2017-7 from https://github.com/AnimeNeko/Atarashii/commit/
b311ec327413aa4ef4aaabb8a8496c61d342cfe9

[10] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of Android apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013. 641–660.

[11] Abhijeet Banerjee, Hai-Feng Guo, and Abhik Roychoudhury. 2016. Debugging
Energy-efficiency Related Field Failures in Mobile Apps. In Proceedings of the
International Conference on Mobile Software Engineering and Systems (MOBILESoft
’16). ACM, New York, NY, USA, 127–138.

[12] Bankdroid. 2017. Bankdroid. (2017). Retrieved 2017-7 from https://github.com/
liato/android-bankdroid

[13] Bankdroid. 2017. Bankdroid revision 8b31cd3. (2017). Retrieved
2017-7 from https://github.com/liato/android-bankdroid/commit/
8b31cd36fab5ff746ed5a2096369f9990de7b064

[14] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable Race Detection
for Android Applications. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 332–348.

[15] c:geo. 2017. c:geo. (2017). Retrieved 2017-7 from https://github.com/cgeo/cgeo

[16] c:geo. 2017. c:geo revision d6b4e4d. (2017). Retrieved 2017-7 from https:
//github.com/cgeo/cgeo/commit/d6b4e4d958568ea04669f511a85f24ac08f524b6

[17] Wontae Choi, George C. Necula, and Koushik Sen. 2013. Guided GUI testing
of Android apps with minimal restart and approximate learning. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013. 623–640.

[18] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. 2015.
Unveiling Exception Handling Bug Hazards in Android Based on GitHub and
Google Code Issues. In Proceedings of the 12th Working Conference on Mining
Software Repositories (MSR ’15). IEEE Press, Piscataway, NJ, USA, 134–145.

[19] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. 2017. Mutation
operators for testing Android apps. Information & Software Technology 81 (2017),
154–168.

[20] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In Proceedings of the 20th USENIX
Conference on Security (SEC’11). USENIX Association, Berkeley, CA, USA, 21–21.

[21] Lingling Fan et al. 2017. Dataset of Android App Crashes. (2017). Retrieved
2017-7 from https://crashanalysis.github.io/

[22] Lingling Fan, Sen Chen, Lihua Xu, Zongyuan Yang, and Huibiao Zhu. 2016. Model-
Based Continuous Verification. In Software Engineering Conference (APSEC), 2016
23rd Asia-Pacific. IEEE, 81–88.

[23] FindBugs. 2017. FindBugs. (2017). Retrieved 2017-7 from http://findbugs.
sourceforge.net/

[24] WordPress for Android. 2017. revision 663ce5c. (2017). Retrieved
2017-7 from https://github.com/wordpress-mobile/WordPress-Android/commit/
663ce5c1bbd739f29f6c23d9ecacbd666e4f806f

[25] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and Hong
Mei. 2015. Fixing Recurring Crash Bugs via Analyzing Q&A Sites (T). In 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015. 307–318.

[26] Google. 2017. Android Developers Documentation. (2017). Retrieved 2017-7
from https://developer.android.com/reference/packages.html

[27] Google. 2017. Android Lint Checks. (2017). Retrieved 2017-8 from http://tools.
android.com/tips/lint-checks

[28] Google. 2017. Fragments. (2017). Retrieved 2017-7 from https://developer.
android.com/guide/components/fragments.html

[29] Google. 2017. Handler. (2017). Retrieved 2017-7 from https://developer.android.
com/reference/android/os/Handler.html

[30] Google. 2017. Keeping Your App Responsive. (2017). Retrieved 2017-7 from
https://developer.android.com/training/articles/perf-anr.html

[31] Google. 2017. Lint. (2017). Retrieved 2017-7 from https://developer.android.com/
studio/write/lint.html

[32] Google. 2017. Looper. (2017). Retrieved 2017-7 from https://developer.android.
com/reference/android/os/Looper.html

[33] Google. 2017. Managing Bitmap Memory. (2017). Retrieved 2017-7 from https:
//developer.android.com/topic/performance/graphics/manage-memory.html

[34] Google. 2017. Monkey. (2017). Retrieved 2017-7 from http://developer.android.
com/tools/help/monkey.html

[35] Google. 2017. NetworkOnMainThreadException. (2017). Re-
trieved 2017-7 from https://developer.android.com/reference/android/os/
NetworkOnMainThreadException.html

[36] Google. 2017. PhoneStateListener. (2017). Retrieved 2017-7 from http://grepcode.
com/file/repository.grepcode.com/java/ext/com.google.android/android/4.3.1_
r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler

[37] Google. 2017. Processes and Threads. (2017). Retrieved 2017-7 from https:
//developer.android.com/guide/components/processes-and-threads.html

[38] Google. 2017. Requesting Permissions at Run Time. (2017). Retrieved 2017-7
from https://developer.android.com/training/permissions/requesting.html

[39] Google. 2017. The Activity Lifecycle. (2017). Retrieved 2017-7 from https:
//developer.android.com/guide/components/activities/activity-lifecycle.html

[40] Simone GRAZIUSSI. 2016. Lifecycle and Event-Based Testing for Android Ap-
plications. Master’s thesis. School Of Industrial Engineering and Information,
Politecnico.

[41] F-droid Group. 2017. F-Droid. (2017). Retrieved 2017-2-18 from https://f-droid.
org/

[42] JaCoCo Group. 2017. JaCoCo. (2017). Retrieved 2017-7 from http://www.
eclemma.org/jacoco/

[43] Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, Xiaoxing Ma,
and Jian Lu. 2017. AimDroid: Activity-Insulated Multi-level Automated Testing
for Android Applications. In 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017.
103–114.

[44] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
2014. PUMA: Programmable UI-automation for Large-scale Dynamic Analysis
of Mobile Apps. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’14). ACM, New York, NY,
USA, 204–217. https://doi.org/10.1145/2594368.2594390

[45] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI Testing for Android
Applications. In Proceedings of the 6th International Workshop on Automation of
Software Test (AST ’11). ACM, New York, NY, USA, 77–83.

[46] Gang Hu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, effectively
detecting mobile app bugs with AppDoctor. In Ninth Eurosys Conference 2014,
EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014. 18:1–18:15.

[47] JDK. 2017. JDK 7 Compatibility Issues. (2017). Retrieved 2017-7 from http:
//kb.yworks.com/article/550/

[48] Shujuan Jiang, Hongchang Zhang, Qingtan Wang, and Yanmei Zhang. 2010. A
Debugging Approach for Java Runtime Exceptions Based on Program Slicing and
Stack Traces. In Proceedings of the 2010 10th International Conference on Quality
Software (QSIC ’10). IEEE Computer Society, Washington, DC, USA, 393–398.

[49] Nataniel P. Borges Jr. 2017. Data flow oriented UI testing: exploiting data flows
and UI elements to test Android applications. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Santa Barbara,
CA, USA, July 10 - 14, 2017. 432–435.

[50] Junit. 2017. Junit. (2017). Retrieved 2017-7 from http://junit.org/junit4/

418

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

[51] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zimmer-
mann, and David Lo. 2015. Understanding the Test Automation Culture of App
Developers. In 8th IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015, Graz, Austria, April 13-17, 2015. 1–10.

[52] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massi-
miliano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2017. Enabling Mutation Testing for Android Apps. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2017). ACM, New York, NY, USA, 233–244.

[53] Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk.
2015. How Developers Detect and Fix Performance Bottlenecks in Android Apps.
In Proceedings of the 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME) (ICSME ’15). IEEE Computer Society, Washington, DC,
USA, 352–361.

[54] Yepang Liu, Lili Wei, Chang Xu, and Shing-Chi Cheung. 2016. DroidLeaks: Bench-
marking Resource Leak Bugs for Android Applications. CoRR abs/1611.08079
(2016).

[55] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and De-
tecting Performance Bugs for Smartphone Applications. In Proceedings of the
36th International Conference on Software Engineering (ICSE 2014). 1013–1024.
http://doi.acm.org/10.1145/2568225.2568229

[56] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Valerio Terragni. 2016. Under-
standing and Detecting Wake Lock Misuses for Android Applications. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2016). ACM, New York, NY, USA, 396–409.

[57] Local-GSM-Backend. 2017. Local-GSM-Backend. (2017). Retrieved 2017-7 from
https://github.com/n76/Local-GSM-Backend

[58] Local-GSM-Backend. 2017. Local-GSM-Backend revision 07e4a759. (2017).
Retrieved 2017-7 from https://github.com/n76/Local-GSM-Backend/commit/
07e4a759392c6f2c0b28890f96a177cb211ffc2d

[59] Alex Lockwood. 2017. Fragment Transactions and Activity State Loss.
(2017). Retrieved 2017-7 from http://www.androiddesignpatterns.com/2013/
08/fragment-transaction-commit-state-loss.html

[60] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013. 224–234.

[61] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: segmented
evolutionary testing of Android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. 599–609.

[62] Amiya Kumar Maji, Kangli Hao, Salmin Sultana, and Saurabh Bagchi. 2010.
Characterizing Failures in Mobile OSes: A Case Study with Android and Symbian.
In Proceedings of the 2010 IEEE 21st International Symposium on Software Reliability
Engineering (ISSRE ’10). IEEE Computer Society, Washington, DC, USA, 249–258.

[63] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July
18-20, 2016. 94–105.

[64] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study
of API Stability and Adoption in the Android Ecosystem. In Proceedings of the
2013 IEEE International Conference on Software Maintenance (ICSM ’13). IEEE
Computer Society, Washington, DC, USA, 70–79.

[65] Guozhu Meng, Yinxing Xue, Jing Kai Siow, Ting Su, Annamalai Narayanan, and
Yang Liu. 2017. AndroVault: Constructing Knowledge Graph from Millions of
Android Apps for Automated Analysis. arXiv preprint arXiv:1711.07451 (2017).

[66] Hamed Mirzaei and Abbas Heydarnoori. 2015. Exception Fault Localization in
Android Applications. In Proceedings of the Second ACM International Confer-
ence on Mobile Software Engineering and Systems (MOBILESoft ’15). IEEE Press,
Piscataway, NJ, USA, 156–157.

[67] NextGIS Mobile. 2017. revision 2ef12a7. (2017). Retrieved
2017-7 from https://github.com/nextgis/android_gisapp/commit/
2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e

[68] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and
Reproducing Android Application Crashes. In 2016 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2016, Chicago, IL, USA, April
11-15, 2016. 33–44.

[69] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2017. CrashScope: a practical tool for automated
testing of Android applications. In Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 -
Companion Volume. 15–18.

[70] MPDroid. 2017. MPDroid. (2017). Retrieved 2017-7 from https://github.com/
abarisain/dmix/issues/286

[71] Nextcloud Notes. 2017. Nextcloud Notes. (2017). Retrieved 2017-7 from https:
//github.com/stefan-niedermann/nextcloud-notes

[72] Nextcloud Notes. 2017. Nextcloud Notes. (2017). Retrieved 2017-7 from https:
//github.com/stefan-niedermann/nextcloud-notes/issues/199

[73] Nextcloud Notes. 2017. Nextcloud Notes. (2017). Retrieved 2017-7
from https://github.com/stefan-niedermann/nextcloud-notes/pull/212/commits/
aa1a97292b5f7511473282cc40f23e786f019d7f

[74] PMD. 2017. PMD Android rules. (2017). Retrieved 2017-8 from https://pmd.
github.io/pmd-5.8.1/pmd-java/rules/java/android.html

[75] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari Balakrishnan. 2014.
Automatic and Scalable Fault Detection for Mobile Applications. In Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’14). ACM, New York, NY, USA, 190–203.

[76] Robolectric. 2017. Robolectric: test-drive your Android code. (2017). Retrieved
2017-7 from http://robolectric.org/

[77] Vlad Roubtsov. 2017. EMMA. (2017). Retrieved 2017-2-18 from http://emma.
sourceforge.net/

[78] Gayathri Santhanakrishnan, Chris Cargile, and Aspen Olmsted. 2016. Memory
leak detection in android applications based on code patterns. In Information
Society (i-Society), 2016 International Conference on. IEEE, 133–134.

[79] Hossain Shahriar, Sarah North, and Edward Mawangi. 2014. Testing of Memory
Leak in Android Applications. In 15th International IEEE Symposium on High-
Assurance Systems Engineering, HASE 2014, Miami Beach, FL, USA, January 9-11,
2014. 176–183.

[80] Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. 2016. Finding Resume and
Restart Errors in Android Applications. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2016). ACM, New York, NY, USA, 864–880.

[81] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim, and
Mary Jean Harrold. 2009. Fault Localization and Repair for Java Runtime Ex-
ceptions. In Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis (ISSTA ’09). ACM, New York, NY, USA, 153–164.

[82] Sonar. 2017. Sonar. (2017). Retrieved 2017-7 from https://www.sonarqube.org/

[83] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: Beyond GUI Testing
for Android Applications. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2017). IEEE Press, Piscataway,
NJ, USA, 27–37.

[84] Ting Su. 2016. FSMdroid: Guided GUI Testing of Android Apps. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016 - Companion Volume. 689–691.

[85] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 245–256.

[86] Ting Su, KeWu,Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. 2017. A Survey on Data-Flow Testing. ACM Comput. Surv. 50, 1, Article 5
(March 2017), 35 pages.

[87] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot-a Java bytecode optimization framework. In Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 13.

[88] Heila van der Merwe, Brink van der Merwe, and Willem Visser. 2012. Verifying
Android Applications Using Java PathFinder. SIGSOFT Softw. Eng. Notes 37, 6
(Nov. 2012), 1–5.

[89] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016). ACM, New York, NY, USA, 226–237.

[90] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014.
CrashLocator: Locating Crashing Faults Based on Crash Stacks. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis (ISSTA 2014).
ACM, New York, NY, USA, 204–214.

[91] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-Box Approach for Auto-
mated GUI-Model Generation of Mobile Applications. In Fundamental Approaches
to Software Engineering - 16th International Conference, FASE 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings. 250–265.

[92] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. 2014. Automated
Generation of Oracles for Testing User-Interaction Features of Mobile Apps.
In Proceedings of the 2014 IEEE International Conference on Software Testing,
Verification, and Validation (ICST ’14). IEEE Computer Society, Washington, DC,
USA, 183–192.

419

