
Scenario-Driven and Context-Aware Automated
Accessibility Testing for Android Apps

Yuxin Zhang∗, Sen Chen†§, Xiaofei Xie‡, Zibo Liu∗, and Lingling Fan†
∗College of Intelligence and Computing, Tianjin University, Tianjin, China

†College of Cyber Science, Nankai University, Tianjin, China
‡Singapore Management University, Singapore, Singapore

Abstract—Mobile accessibility is increasingly important nowa-
days as it enables people with disabilities to use mobile appli-
cations to perform daily tasks. Ensuring mobile accessibility not
only benefits those with disabilities but also enhances the user
experience for all users, making applications more intuitive and
user-friendly. Although numerous tools are available for testing
and detecting accessibility issues in Android applications, a large
number of false negatives and false positives persist due to
limitations in the existing approaches, i.e., low coverage of UI
scenarios and lack of consideration of runtime context. To address
these problems, in this paper, we propose a scenario-driven
exploration method for improving the coverage of UI scenarios,
thereby detecting accessibility issues within the application, and
ultimately reducing false negatives. Furthermore, to reduce false
positives caused by not considering the runtime context, we
propose a context-aware detection method that provides a more
fine-grained detection capability.

Our experimental results reveal that A11yScan can detect 1.7X
more issues surpassing current state-of-the-art approaches like
Xbot (3,991 vs. 2,321), thereby reducing the false negative rate by
41.84%. Additionally, it outperforms established UI exploration
techniques such as SceneDroid (952 vs. 661 UI scenarios), while
achieving comparable activity coverage to recent leading GUI
testing tools like GPTDroid on the available dataset (73% vs.
71%). Meanwhile, with the context-aware detection method,
A11yScan effectively reduces the false positive rate by 21%,
validated with a 90.56% accuracy rate through a user study.

Index Terms—Mobile accessibility, Accessibility testing, An-
droid app, UI exploration, Context-aware analysis

I. INTRODUCTION

The increasing popularity of mobile applications (apps)
has made them an essential element in people’s daily lives,
and mobile apps have become an important medium for
accessing information and services. However, many of these
apps are inaccessible to people with disabilities, making it
difficult for them to use and enjoy the same benefits as non-
disabled users [1]–[4]. The World Health Organization (WHO)
estimates that approximately 15% of the world’s population
has a disability [5], which means that app developers must
ensure that all users, including disabled users, can access their
apps [6]–[9]. Despite increasing awareness of accessibility, a
large number of developers still struggle to create accessible
apps due to a lack of knowledge or understanding of accessi-
bility guidelines [10]. Thus, effective tools are urgently needed
to help developers detect accessibility issues in their apps.

§ Sen Chen is the corresponding author (Email: tigersenchen@163.com).

In recent years, researchers have developed many tools to
test and detect accessibility issues in apps and conduct empir-
ical research on these issues [3], [11], [12]. These tools are
mainly divided into two categories: static and dynamic analysis
tools. Static analysis tools [13]–[15] such as Android Lint [16]
detect accessibility issues by analyzing static information such
as code and resource files without running the apps, however,
they are ineffective and time-consuming in detecting mobile
accessibility issues [3], [7]. Dynamic analysis tools, on the
other hand, detect accessibility issues by running the app with
different UI exploration methods, such as manually dynamic
methods [17]–[20], script-based dynamic methods [21]–[23],
and automated dynamic methods [7], [24]. Since the issue
coverage of accessibility detection depends on the number
of explored UI pages, their common goal is to reach more
UI scenarios and check whether the attributes of the UI
components in them violate accessibility standards. App UI
scenarios include Android Activity itself, Activity-dependent,
and Activity-sensitive UI scenarios. Each Activity includes
various UI scenarios beyond the initially rendered UI page
during runtime, such as fragment UI, drawer, menu, and dia-
log, which refer to Activity-dependent UI scenarios. Activity-
sensitive UI scenarios refer to the new UI states of the current
Activity when the states of other UI scenarios change due to
user interactions. As shown in Fig. 1, clicking the menu button
in the upper right corner of the first MainActivity can reach
an Activity-dependent UI scenario (i.e., the second updated
MainActivity), while user interaction flows (Adding a new
category in CategoriesActivity) can lead to an activity-sensitive
UI scenario (i.e., the last updated MainActivity). Failure to
explore activity-dependent or activity-sensitive UI scenarios of
apps would result in the inability to detect accessibility issues
in them, such as Issue1, Issue2, and Issue3 in this example.

However, existing accessibility testing tools have some
significant drawbacks: (1) Low coverage of UI scenarios
causing false negatives. The existing manual and script-
based tools can only cover limited UI scenarios, and the
current automated dynamic accessibility testing tools primarily
focus on detecting the accessibility of activities, while over-
looking the accessibility issues that may arise from activity-
dependent and activity-sensitive UI scenarios. In addition
to accessibility detection tools, app GUI testing [25]–[34]
and UI exploration [35]–[38] tools also constantly strive to

Fig. 1: New accessibility issues detected in activity-dependent
and activity-sensitive UI scenarios.

extract more UI scenarios for different purposes, which would
enhance the ability of accessibility testing. Although these
tools cover a wide range of UI components and paths to
improve activity/UI coverage, their main goal is to improve
coverage or identify general bugs, often ignoring the dif-
ferent attributes of the same UI component in different UI
scenarios, which are crucial for accessibility testing as they
can determine whether the UI component meets accessibility
standards. Ignoring this difference can lead to missed detection
of a component’s accessibility issues in specific scenarios. (2)
Lack of consideration of runtime context causing false
positives. The existing accessibility testing tools directly rely
on accessibility rules [39] to check whether the attributes of
the detected component violate the accessibility standards, and
lack consideration of the actual runtime context of the detected
component, which can lead to incorrect judgments about the
attributes of the UI component in different usage scenarios,
resulting in false positives. For example, these tools may
mistakenly identify TextView components that have been set
as invisible by developer as low contrast issues. Whether a UI
component has accessibility issues requires not only checking
whether its current attributes violate accessibility rules but
also considering contextual information during app runtime,
such as the hierarchy of all UI components in the current UI
page and the state of this UI component itself (i.e., (in)visible,
(un)filled, and (un)checked).

To address these above problems, we propose A11yScan,
an automated approach for accurately detecting accessibility
issues in Android apps. Specifically, to solve the first prob-
lem, we design a scenario-driven UI exploration method that
dynamically explores as many UI scenarios as possible of
the apps, to expand the scope of accessibility detection using
two key strategies: (1) initial state exploration, which uses
the command-line activity launches combined with a depth-
first exploration strategy featuring multi-state combination to
interact with the interactive UI components of each Activity
to increase activity coverage while simultaneously acquiring
additional activity-dependent UI scenarios and the various
attributes of UI components in them, and (2) enhanced state
re-exploration, which analyzes and re-explores critical UI
scenarios with two or more out-degrees in the UI scenario
transitions generated from initial state exploration to identify
activity-sensitive UI scenarios and the attribute changes of the
same UI component in new detected UI scenarios. Through

high UI scenario coverage, the scenario-driven UI exploration
method targets accessibility testing by capturing the different
attributes of UI components across different UI scenarios,
ensuring comprehensive accessibility assessment of the app.
To solve the second problem, we propose a context-aware
detection method that designs newly-defined checking rules,
referred to as oracle, by combining the pre-defined rules
of testing frameworks like Accessibility Testing Frameworks
(ATF) [39] and the contextual information gained from con-
structing resource trees of the UI components. These new rules
in this oracle are not about redefining accessibility standards
but optimizing the detection implementations to make results
more accurate and aligned with standards. Additionally, the
extraction of contextual information is independent of specific
issue types. While these designs are systematic, the checking
rules still need to be fine-tuned according to different issue
types, ensuring accurate accessibility assessment of the app.

We conducted a series of experiments on 100 real-world
Android apps, including both closed-source and open-source
apps, to evaluate the effectiveness and efficiency of A11yScan.
The experimental results indicate that A11yScan performs
well in issue detection with 1.7X more issues (Reduced the
false negative rate by 41.84%) compared to the state-of-the-
art accessibility testing tool (i.e., Xbot [7]). Furthermore,
A11yScan outperforms in extracting UI scenarios compared
with the state-of-the-art UI exploration tools like SceneDroid
(952 vs. 661 UI scenarios). Additionally, to ensure the com-
prehensiveness of effectiveness evaluation, we further take
into account the recent state-of-the-art GUI testing tool (i.e.,
GPTDroid [31]). We compared it using the metric of activity
coverage and app dataset used in their paper rather than the
number of explored UI scenarios and detected issues due to the
unavailability of their tool. A11yScan achieved a comparable
result on activity coverage (73% vs. 71%), which demonstrates
that the ability of the scenario-driven exploration method is
comparable even compared with the cutting-edge technique-
enhanced approach with the large language models.

Additionally, false positives, identified through context-
aware issue detection, represent 21% of detected issues. Subse-
quent user study verified an accuracy of 90.56%, highlighting
the effectiveness of A11yScan in handling false positives. The
average time for testing one app is 15.16 minutes.

In summary, our main contributions are as follows.
• We are the first work to attempt to address the significant

problem of false alarms when testing app accessibility.
• We proposed a scenario-driven UI exploration method,

aiming to explore both activity-dependent and activity-
sensitive UI scenarios to find more accessibility issues.

• We introduced a context-aware detection method aimed
at reducing false positives by leveraging contextual infor-
mation from UI components during the app’s runtime.

• We have released A11yScan as well as the used dataset
on https://github.com/tjuyuxinzhang/A11yScan-mobile.
git.

https://github.com/tjuyuxinzhang/A11yScan-mobile.git
https://github.com/tjuyuxinzhang/A11yScan-mobile.git

II. BACKGROUND

A. UI scenarios of Android Apps
UI scenario is crucial for testing Android apps. The UI

scenario covers a series of state changes during the interaction
between users and apps, reflecting the dynamics and interactiv-
ity of the software. The following will explore three key types
of UI scenarios: Activity, Activity-dependent UI scenarios, and
Activity-sensitive UI scenarios.

Activity is a fundamental component in Android apps,
representing a single screen with a UI scenario. It serves not
only as a container for user interactions but also as the primary
means for the app to present information.

Activity-dependent UI scenarios involve state changes trig-
gered by user interaction with UI components such as EditText
and Button within a single Activity. These changes usually
occur after users perform operations such as clicking buttons,
selecting drop-down menu items, or entering data. The state
changes in such scenarios are predictable as they directly
depend on user interactions. As shown in Fig. 1, when the
user clicks on the menu button in the first MainActivity (circled
in red), a drawer is triggered, which generates a new activity-
dependent UI scenario (i.e., the second updated MainActivity).

Activity-sensitive UI scenarios focus on UI state changes
caused by user interactions, which may indirectly affect the
current or related activities. The changes in these scenarios are
indirect and may not immediately manifest, as they depend
on the operations accumulated by users during the use of
the app. For example, a user’s actions in one Activity may
affect the data display of another Activity, even if there is
no direct interaction path between the two. In the subsequent
section of Fig. 1, when the user creates a new category in
CategoriesActvity, the MainActivity is updated and expanded,
which refers to an activity-sensitive UI scenario (i.e., the last
updated MainActivity).

B. Accessibility Standards
Mobile accessibility is an important aspect of ensuring

equal access to technology for people with disabilities. To
improve the accessibility of mobile devices, many accessibil-
ity standards and developer guidelines have been proposed,
including those from W3C, Web Content Accessibility Guide-
lines (WCAG) 2.0 [40] and 2.1 [41], Google Accessibility
Guidelines for Android [42], ISO 9241 developed by the
International Organization for Standardization (ISO) [43], the
US Revised Section 508 Standards [44], and the BBC Mobile
Accessibility Standards [45] and Guidelines from the UK
[46], among others. These standards provide recommendations
to better support people with different types of disabilities,
including those with mobility, hearing, and visual impairments.

Besides these standards and guidelines, companies have
developed their own accessibility guidelines based on industry
standards. For example, the Android Accessibility Developer
Guidelines [47], Apple Accessibility Developer Guidelines
[48], and IBM Accessibility Checklist [19] provide developers
with specific recommendations and best practices for creating
accessible mobile apps.

TABLE I: List of accessibility testing tools for Android apps.
Category Strategy Tools

Static Analysis
Automated Static

Method
Lint [16], PMD [13],

Checkstyle [14]

Dynamic
Analysis

Manual
Dynamic Method

Accessibility Scanner [17], [18],
IBM AbilityLab Mobile

Accessibility Checker [19]
TalkBack [53], Switch Access [54],

A11yPuppetry [20]

Script-based
Dynamic Method

Espresso [22], Robotium [55],
Robolectric [56]

Latte [23], UIautomator [21],
Appium [57]

Automated
Dynamic Method

MATE [58], Groundhog [24],
PUMA [59], forApp [60]

Xbot [7]

There are also some relevant laws and regulations. For
example, the US Americans with Disabilities Act (ADA) [49]
and the Communications and Video Accessibility Act [50]
require federal agencies to use technology that meets 508 stan-
dards [44] to ensure that people with disabilities can use these
technologies. Similarly, the European Union has also issued
the Convention on the Rights of Persons with Disabilities [51]
and requires member states to take measures to ensure that
people with disabilities can access digital technologies [52]
such as mobile devices and the Internet.

C. Accessibility Testing Tools

Table I lists the commonly-used accessibility testing tools
for Android apps, which can be classified into two categories
based on their used techniques: static and dynamic analysis.

1) Static Analysis: Static analysis can detect accessibility
issues by analyzing the source code or compiled code of
the app. However, this type of tool often fails to capture
accessibility issues that only appear at runtime and cannot
consider the actual runtime environment of the app. Tools like
Lint [16], PDM [13], and Checkstyle [14] can be used to detect
errors and potential issues in the code, such as missing content
descriptions and accessibility tags in XML layout files, which
can improve code quality.

2) Dynamic Analysis: Dynamic analysis can detect acces-
sibility issues at runtime to test the accessibility of the app.
This approach overcomes the limitations of static analysis and
can more accurately simulate how real users use the app.
Dynamic analysis tools can be classified into three types based
on their exploration strategy: manual dynamic method, script-
based dynamic method, and automated dynamic method.

a) Manual dynamic method: This method requires de-
velopers to manually simulate user interactions and check the
accessibility of the app. Therefore, it requires developers to
have a certain level of knowledge and skills in accessibility,
and is relatively time-consuming and labor-intensive, making
it less suitable for large-scale app testing. By interacting
with the components on the UI page manually, developers
can visually determine whether the detected issues are true
or not. It can also effectively explore more complex com-
ponents in some scenarios, but reproducing issues may be

Color-related

Issues
Optimal Color

Selection

Attribute-to-repair

Localization & Repair

Accessibility Issue

Detection

Reference DB

Construction

Accessibility

Issue

Reports

Dataset

without Issues

Panoramic UI

Exploration

ATF-based Issue

Detection

Fine-Grained

Resource Analysis

Resource Files

& Screenshots

Detected

Issues

Accessibility

Issue

Reports

SUPERVISOR.apk

Logic-driven

UI Exploration

ATF-based Issue

Detection

Fine-grained UI

Resource Analysis

Resource Files

& Screenshots

Detected

Issues

Accessibility

Issue

Reports

Accessibility

Issue

Reports

Initial State Exploration ATF-based Accessibility Checks

Scenario-driven UI exploration

SUPERVISOR

SUPERVISOR.apk

Context-aware Issue Detection

Enhanced State Re-exploration Runtime Context-ware Analysis

Resource Files

& Screenshots

& Runtime Layout

Information

Fig. 2: Overview of A11yScan.

more difficult. Currently, commonly-used tools such as the
Accessibility Scanner [17]. It can automatically scan while
manually exploring the UI pages, and provide detailed reports
on accessibility issues and repair suggestions. In addition, the
Android system provides some assistive services to help the
disabled use Android devices, such as TalkBack [53] for visual
impairments and Switch Access [54] for motor impairments.
These tools can assist testers in simulating the behavior of
different users when using the app.

b) Script-based dynamic method: This method uses
scripts to simulate user interactions and check the accessibility
of the app. It is more automated and efficient than the manual
dynamic and can be used for large-scale app testing. These
scripts can be customized for different scenarios and can be
easily executed repeatedly. However, writing suitable scripts
is a challenge. Commonly used tools include Espresso [22]
and Robotium. In addition, others such as Latte [23], Appium
[57], and UIautomator [21] can integrate assistive services for
testing and focus on meeting the needs of different users.

c) Automated dynamic method: This method can fully
automatically simulate user interactions and check the acces-
sibility of the app. It is the highest degree of automation,
and can quickly and accurately detect accessibility issues in
large and complex apps, making it suitable for large-scale
app testing. Existing tools attempt to explore UI pages using
different methods to discover potential issues on more UI
pages. For example, both MATE [58] and Groundhog [24]
use the Monkey [61], [62] to simulate user interactions with
the app, whose random strategy can lead to incomplete explo-
ration. Xbot [7] uses instrumentation technique and static data-
flow analysis based on Activity intent parameters to explore
UI pages, achieving a higher activity coverage, but ignoring
activity-dependent and activity-sensitive UI scenarios triggered
by interactive components as well as user interactions.

III. APPROACH

To overcome the limitations of existing state-of-the-art
approaches in terms of false negatives and false positives,
we propose a fully automated tool for testing and detecting
accessibility issues in Android apps, named A11yScan, which
takes an APK file as input and outputs detection reports
for accessibility issues and other relevant parsing results. As
shown in Fig. 2, A11yScan mainly consists of two phases: (1)
Scenario-driven UI Exploration, which thoroughly explores
more UI scenarios of the app to increase scenario coverage
and detection range, to discover more potential accessibility
issues (2) Context-aware Issue Detection, which checks the
accessibility of the detected UI components by newly-defined
checking rules, combining the pre-defined rules of current ac-

cessibility testing frameworks and the contextual information
of detected UI components by constructing resource trees of
the relevant UI components.

A. Scenario-driven UI Exploration

To minimize the occurrence of false negatives, our goal
is to capture as many UI scenarios as possible in the apps.
However, this is a challenging task due to various limitations
of existing tools. (1) Firstly, the complex code structure and
diverse scenario designs of apps make it difficult to simulate
a wide range of user interactions and consider the impact
of user interactions between different UI components, thus
limiting the ability to explore activities and more UI scenarios
with multiple UI states. (2) Secondly, existing tools lack
consideration of the UI state changes generated after complex
user interactions, which may accompany attribute changes of
UI components and thus fall short of identifying and exploring
activity-sensitive UI scenarios. To achieve higher coverage of
UI scenarios, we have adopted two key strategies:

1) Initial State Exploration: Android provides an interface
to directly launch activities from the console using the Android
Debug Bridge commands. This involves using Intent objects
to specify the target Activity and pass necessary data, where
Intent serves as one of the mechanisms for inter-component
communication (ICC) in Android, supporting message ex-
change and operation execution. To generate Intent objects,
A11yScan parses the AndroidManifest.xml file and Java code
to obtain the basic attributes (including action, category, data,
and type) and extra parameters (composed of basic structures
such as String, Char, and Boolean) of Intent objects. And
fill in extra parameters based on data types. A11yScan then
uses these Intent objects to directly launch the Activity from
the console for future testing tasks like Fax [63] and Story-
Distiller [37]. This establishes the foundation for exploring
various UI scenarios by adopting different strategies.

In Android apps, each UI page is made up of various UI
components, ranging from simple buttons and text fields to
more complex image carousels and navigation menus [64].
User interactions with these UI components trigger new UI
scenarios and interactions. For example, clicking a Button
component may open a new UI page or display additional
information. Inputting text or numbers into an EditText com-
ponent may guide the user to different pages or sections of
the app. Therefore, after launching a new UI page, A11yScan
retrieves the interactable UI components on the current page
and employs a top-down depth-first exploration strategy to
interact with each component individually, such as filling Edit-
Text components with the randomly generated inputs according
to the attribute inputType of EditText and clicking on clickable

MainAct (8)

ChatAct (1) SettingAct (0)
HomeAct (6)

ProfileAct (1)
HomeAct-S4 (3)

ChatAct-S1 (0)
HomeAct-S5 (2)

HomeAct-S6 (0) HomeAct-S7 (1)

HomeAct-S1 (1)

HomeAct-S2 (1)

HomeAct-S3 (0)

SearchAct (0)

HomeAct-S9 (0)

HomeAct-S8 (0)

Text

Text

Fig. 3: UI scenario transitions generated by initial state ex-
ploration. The node represents UI scenarios and (#) refers to
their out-degrees.

components. Additionally, A11yScan evaluates all possible
combinations of component states to capture the diversity
and dynamics of real user interactions. For example, with
an EditText (filled/blank), a CheckBox (checked/unchecked),
and a Switch Button (on/off), it explores all 23 = 8 initial
UI states through multi-state combination. Then A11yScan
continues depth-first exploration until all possible UI scenarios
are explored or no new scenarios are found. Additionally,
scrollable pages will be fully presented through scrolling.

Overall, A11yScan utilizes command-line activity launches
followed by a top-down depth-first exploration strategy to
trigger a wider variety of component states and UI states,
effectively reaching more activities and exploring activity-
dependent UI scenarios and capturing various attributes of UI
components in them.

2) Enhanced State Re-exploration: After the initial UI
exploration, some UI scenarios might change due to user
interactions. These changes often involve activity-sensitive UI
scenarios, where the UI state dynamically changes with the
operations accumulated by users. To accurately capture these
changes, we developed an advanced strategy to identify these
activity-sensitive UI scenarios and detect whether there are
new UI scenarios triggered by previous exploration behaviors.

A11yScan identifies critical UI scenarios that are susceptible
to state changes induced by interactions in other scenarios
by analyzing UI scenario transitions following the initial state
exploration. Fig. 3 represents the UI scenario transitions gener-
ated after the initial state exploration of a real app, showing the
transition path between activities and other UI scenarios. Each
node represents a UI scenario including Activity and Activity-
dependent scenarios, and (#) on them refers to their out-
degrees, reflecting their significance in the app logic and their
sensitivity to state changes. For example, MainAct can reach
8 event flows of UI scenario, indicating that it carries more
functions, while ProfileAct can only reach one with simpler
logic. If a UI scenario can reach multiple paths, we consider
it a critical UI scenario, which is sensitive to changes in the UI
state, such as MainAct, HomeAct, HomeAct-S4, and HomeAct-
S5 in Fig. 3. Subsequently, A11yScan employs a bottom-
up depth-first exploration approach to re-explore the marked
critical UI scenarios to identify activity-sensitive UI scenarios
as well as the attribute changes of the same UI component in
new detected UI scenarios. This bottom-up strategy, distinct
from the top-down used during the initial state exploration,
simulates potential random user interactions. This exploration

Algorithm 1: Scenario-driven UI Exploration
Input: actall: All activities with Intent objects in the app.
Output: S: All UI scenarios explored within the app.

1 foreach act, Intent ∈ actall do
2 S ← S ∪ startAct(act, Intent)
3 S ← S ∪ InitialExploration(act)

4 S ← S ∪ EnhancedReExploration(S)
5 return S
6 Function InitialExploration(act):
7 Compsint ← GetInteractableComps(act)
8 foreach comp ∈ Compsint do
9 S ← S ∪ InteractWithComp(comp)

10 return S

11 Function EnhancedReExploration(S):
12 Skey ← IdentifyKeyScenarios(S)
13 foreach sk ∈ Skey do
14 if DetectStateChange(sk) then
15 S ← S ∪ ReExploreScenario(sk)

16 return S

aims to verify if our initial actions have triggered new UI
states or behaviors, revealing more complex and dynamic UI
scenarios.

It is worth noting that A11yScan dumps the layout structure
of the UI page runtime and extracts the resource-id, class, and
package attributes of each UI component. It uses the MD5
hash algorithm [65] to generate unique identifiers for each
UI component, thereby identifying and distinguishing unique
scenarios and avoiding the exploration of duplicate scenarios.

Algorithm 1 delineates the entire process of scenario-driven
UI exploration, which employs two exploration strategies. The
input is all activities with associated Intent objects in the
app, and the output consists of UI scenarios explored using
exploration. Specifically, each Activity act is directly started
using Intent objects Intent (Lines 1∼2), followed by an
initial state exploration through the method InitialExploration
(Line 3). During initial state exploration (Lines 6∼10), all
runtime interactable components Compsint are first retrieved
(Line 7), and a top-down interaction with these components
is conducted to explore all reachable activity-dependent UI
scenarios (Lines 8∼9). After the initial exploration, an en-
hanced state re-exploration of the obtained UI scenarios is
performed by the method EnhancedReExploration (Line 4) to
capture activity-sensitive UI scenarios. In the re-exploration
(Lines 11∼16), the UI scenario transitions generated after
the initial exploration are analyzed to identify critical UI
scenarios Skey (Line 12). Each critical UI scenario sk is then
checked for state changes resulting from interactions during
the initial exploration (Lines 13∼14); if changes are detected,
indicating an activity-sensitive UI scenario, a bottom-up re-
exploration of that scenario is conducted (Line 15). Finally,
upon completion of all explorations, the collection of UI
scenarios, S, is returned.

B. Context-aware Issue Detection

Rule-based checks are pre-defined methods based on acces-
sibility standards, making it difficult to consider the diversity
of the runtime environment and the states of the detected
components. Existing tools use UIAutomator [66] to capture
UI layouts and screenshots to obtain UI component attributes
for accessibility detection, which can be affected by incorrect
screenshots or missing context, leading to existing rule-based
misjudgments. To make the detection issues more compre-
hensive and reliable, we newly defined the checking rules by
combining the pre-defined rules of the official accessibility
testing framework ATF [39] developed and maintained by
Google, and the runtime contextual information of detected
UI components.

1) ATF-based Accessibility Checks: To help app devel-
opers test the accessibility of their apps, Google provides
an Accessibility Testing Framework (ATF) [39] commonly
used in accessibility testing tools, which includes a set of
APIs for testing the accessibility of apps and websites and
checking compliance with accessibility design guidelines such
as WCAG [40], [41]. However, ATF itself is not a standalone
testing tool. To use ATF, developers need to integrate it into
their existing app development and testing processes.

For the standardization of accessibility detection, we still
use pre-defined ATF as part of our newly defined rules, which
follows the principles of perceivable, operable, understand-
able, and robust, enabling it to detect accessibility issues
related to color contrast, touch size, accessibility labels, and
compatibility with screen readers, among others [40], [41].
With the Accessibility Events from the View of the detected
UI scenario as input, the Accessibility Testing Framework
(ATF) can perform pre-defined accessibility checks on all
components of the current UI scenario, which means that ATF
can analyze every component in the UI, including buttons, text
boxes, labels, etc., to ensure they comply with pre-defined
accessibility standards and rules.

2) Runtime Context-aware Analysis: Although integrating
ATF can help us detect accessibility issues in the apps, it is not
a perfect solution. ATF only performs accessibility checks on
input Accessibility Events using pre-defined methods, which
may lead to potential risks. These Accessibility Events refer
to static data of the captured attributes of UI components and
their UI screenshots. Lack of contextual analysis can easily
lead to inaccurate judgments of attributes of UI components,
especially for some visual design issues or complex interaction
scenarios. Here are some factors that could lead to false
positives without contextual information:
• External Dependency. External Dependency issues arise

when apps display third-party services or images with
significant visual content such as logos or brand names
from other apps during runtime. Accessibility standards
do not require contrast checks for these elements or for
invalid issues like unused components [41]. Detection with-
out contextual information cannot recognize and categorize
the types and uses of detected UI components, leading

Fig. 4: Examples of false positives under different scenarios.

to misjudgments that violate the definition of accessibility
standards.1 FP (External Dependency) in Fig. 4 shows the
circled component was reported as an Image Contrast issue,
but it actually directly references a third-party app’s icon
without contrast requirement in the detected app.

• UI Presentation. ATF detects accessibility issues according
to the captured attributes of UI components and their UI
screenshots. If the UI components are not displayed or
not configured correctly, the detection tool may incorrectly
indicate accessibility issues. FP (UI Presentation) in Fig. 4
shows the TextView component in the app was not displayed
correctly due to occlusion, resulting in ATF falsely reporting
the component has low contrast issue. It is worth noting that
such false positives mainly occur in components that rely on
graphical presentation, where incomplete display results in
inconsistencies between the detected issues and the actual
attributes.

• Specific UI Design. Specific UI design refers to intentional
UI decisions made by app developers to improve the overall
user experience, such as intentionally weakening a compo-
nent to make it less visible or even invisible in the UI.
These designs often have multiple interactive states, such
as the filled/blank states of an EditText component or the
selected/unselected states of a navigation bar. Despite ap-
pearing to violate accessibility standards, our investigation
reveals most users/app developers view these designs as
improvements to the overall user experience rather than
accessibility issues. However, ATF does not consider the
specific context of the component, making it challenging to
identify these specific UI designs, such as the hint text in
the EditText component (FP (UI Design of EditText)) and
the selected status of the navigation bar (FP (UI Design
of Navigation)) in Fig. 4. Unlike the previous two types
of false positives that violate the definition of accessibility
standards, these special UI designs are often contentious
regarding their accessibility impact. A11yScan recognizes
these special UI designs, categorizes, and annotates them in
issue reports, leaving the decision of fixing them to the app
owners.
Therefore, when using ATF to check the accessibility of

1Text or images of text that are part of an inactive user interface component,
that are pure decoration, that are not visible to anyone, or that are part
of a picture that contains significant other visual content, have no contrast
requirement. Text that is part of a logo or brand name has no minimum
contrast requirement [40], [41].

apps, it is necessary to combine the contextual information of
detected UI components (such as their size, visibility, color set-
tings, and their relationship with surrounding UI components)
to assist in issue confirmation. To overcome the limitations
of the testing framework, A11yScan has integrated a runtime
context-aware analysis module that constructs two types of
resource trees to provide runtime contextual information for
detecting app accessibility issues. The pre-defined rules of
ATF and the contextual information gained from constructing
resource trees together constitute the newly-defined checking
rules. These resource trees represent the hierarchical structure
of UI components or views in a UI scenario within an app,
with each component node having rich attributes such as size,
color, visibility, etc.

The first type of resource tree is built based on the decom-
piled resource files of the app, providing a comprehensive view
of the static structure of the app. This tree reflects the expected
structure and organization of the UI designed by developers,
including the hierarchical structure and pre-defined attributes
of all static elements such as Button, TextView, and Image,
typically defined in XML layout files. When using this type
of resource tree, we aim to get the attributes of the detected
UI component and its structural relationship with surrounding
components. Thus, we build the resource tree based on UI
component groups in each decompiled XML file, without
needing a complete predefined XML file.

The second type of resource tree is built based on the actual
runtime layout of the app, reflecting its dynamic performance.
This tree includes dynamically generated or modified UI
components and their runtime attributes, used to capture the
real-time state and behavior of the UI page. Additionally, for
components defined in the code, which lack representation in
the first type of resource tree, we also extract the necessary
contextual information by analyzing the relationships between
UI components in the actual runtime layout.

These two types of resource trees not only consider the
pre-defined static design and UI component attributes of the
app but also the possible changes that may occur during user
interactions. Their combination can provide rich contextual
information and make up for the shortcomings of ATF for
accessibility detection. This method enables us to handle
different UI implementations and ensure accurate extraction of
relevant information. Using the resource trees, the following
checks were mainly verified:
• External Dependency and Invalid issues. To check for

external dependencies or invalid issues in the detected
components, A11yScan extracts attributes of each node in
the resource trees as contextual information. The package
name, image path, Text, size, etc. of the UI component are
important contextual information for accessibility detection.
For example, if the package name is inconsistent with the
current app, it may be components of other apps or system
components that do not belong to the detected app. Images
can be obtained from the image path for contrast checking.
text=“” at runtime sometimes means invisible, etc. Through
these attributes, it can be determined whether the compo-

View

ButtonLayout

TextView … TextViewTextView

Static resource tree

Button

TextView … TextViewTextView

Dynamic resource tree

Layout

View

Layout

text=“If you want”

textColor=“ff000000”

text=“If you want”

textColor=“#A3A3A3”

False Positive

Fig. 5: A real example of using resource trees to obtain
the contextual information of the detected UI component for
accessibility detection.

nents presented in the app depend on external resources,
such as images from external links, and prevent unused
components (i.e., (in)visible, (un)filled, and (un)checked)
from being detected by checking their attributes.

• UI Presentation issues. To check the status of dynamic
loading and collapsing of UI pages, A11yScan identifies
incomplete displayed or missing UI components by compar-
ing the differences between the static resource tree and the
dynamic resource tree, specifically those defined in the static
resource tree but absent in the dynamic resource tree. At this
point, the layout information about the detected component
in the static resource tree can predict its approximate
position at runtime. If it is found in the same position in
the dynamic resource tree but has different attributes in two
resource trees, it may not be fully displayed. In addition, for
dynamically loaded components that are not in the static
resource tree, the attributes of their sibling nodes in the
dynamic resource tree can be obtained as their contextual
information for comparison. We meticulously examine at-
tribute differences among child components under the same
parent component, such as size or other characteristics to
predict the attributes of newly added components.

• UI Design issues (considering developer’s intent). Con-
sidering the developer’s design intent requires combining
the different features contained in the static resource tree
and dynamic resource tree. As developers may define each
group of components in the layout file in advance, the static
resource tree built from compiled resource files will contain
clearer group division, facilitating precise identification of
intentional UI design. The dynamic resource tree is used
to determine the status of each group of components when
runtime. For example, in Figure 3 (UI Design of Naviga-
tion), the navigation bar can be found to contain a set of
Button components with the “selected” attribute value using
the static resource tree, while the dynamic resource tree
obtains the runtime “selected” attribute value to identify
the state changes of this group of components. Likewise,
when dealing with EditText components, analyzing attribute
values helps distinguish between hint-text and display text,
resulting in more accurate accessibility asses.
Fig. 5 is an example of using resource trees to obtain

the contextual information of the detected UI component for
accessibility detection. When using ATF to detect the attributes
of a TextView component that violates accessibility rules and

Algorithm 2: Context-aware Issue Detection
Input: RFs: Decompiled resource files for static tree

generation.
RLs: Runtime layouts for dynamic tree generation.
V iew: The View of detected UI scenario captured by
SUPERVISOR.

Output: FPs: Issues incorrectly identified by ATF.
T Is: Accessibility issues identified in the UI scenario.

1 sTree ← GenerateStaticTree(RFs)
2 dTree ← GenerateDynamicTree(RLs)
3 foreach comp ∈ V iew do
4 warning ← CheckedByATF (comp)
5 if IsExternalOrIsInvalid(comp, warning) then
6 FPs.append(comp, warning)

7 if InStaticAndInDynamic(comp, sTree, dTree)
then

8 FP ,TI ← CompareAndCheck(comp, sTree,
dTree)

9 else
10 FP ,TI ← CompareWithSibling(comp, sTree,

dTree)
11 FPs.append(FP)
12 T Is.append(TI)

13 return FPs, T Is

poses a low contrast issue, we first locate the TextView in the
dynamic resource tree and obtain an attribute that uniquely
identifies the component, such as text=“if you want”. Then
we use this attribute to locate the position of the TextView
in the static resource tree. To confirm the correctness of the
positioning, the hierarchical structure of the TextView and its
parent nodes (Layout and Button marked by yellow shadow in
Fig. 5) also needs to be consistent in both resource trees. By
comparing the TextView in two resource trees, we found that
the textColor=“#A3A3A3” reported by ATF is inconsistent
with the pre-defined attribute of textColor=“ff000000” in the
static resource tree, indicating the existence of a false positive
due to folded component and other reasons.

To check the accessibility of the detected UI components
by our newly-defined checking rules combining the ATF and
the contextual information gained from resource trees, we
developed a monitoring app called SUPERVISOR, which
integrates our newly-defined checking rules. SUPERVISOR
can detect accessibility issues on the currently displayed
UI page during the UI scenario exploration of the tested
app. SUPERVISOR runs in the background as a service and
accesses the accessibility features on Android devices through
the Accessibility API provided by ATF. The Accessibility API
scans the UI page of the app to access various components and
checks if they are accessible by using our rules.

Algorithm 2 elaborates on context-aware issue detection
aimed at utilizing newly-defined checking rules for accessi-
bility issue detection. The input includes decompiled resource
files RFs, runtime layouts RLs, and the View V iew of
detected UI scenario captured by SUPERVISOR, with the
output distinguishing between false positives FPs caused by
ATF and true issues T Is. The procedure entails construct-

ing static and dynamic resource trees sTree, dTree using
decompiled resource files and runtime layouts, respectively
(Lines 1∼2). For each component comp in the V iew, we
first check if this comp violates ATF accessibility rules, and
remark warning warning if true. (Lines 3∼4) For each the
warning warning detected by ATF, we determine whether
the warning stems from external dependencies or invalid
components by comparing attributes within the resource trees
(Lines 5∼6). If a component exists in both resource trees
(Line 7), we evaluate the consistency between the trees to
decide if the warning should be classified as a false positive
FP or a true issue TI (Line 8). In other instances, we
compare sibling node attributes, which is especially common
among dynamically constructed components (Lines 9∼10).
The algorithm ultimately returns a collection of both categories
of issues (Lines 11∼13).

A11yScan uses ApkTool to disassemble APK resource files.
To collect UI information, we used UIAutomator [66] and
ADB [67] to dump the layout hierarchy files and capture the
screenshots when running an app on an Android Emulator
based on Android 9.0 (Google APIs). The emulator’s screen
resolution was 1080px x 1920px, aligning with the specifica-
tions outlined in the WCAG [40], [41].

IV. EXPERIMENTS

To evaluate the effectiveness of A11yScan, we propose the
following three research questions:
• RQ1: (Evaluation of Overall Performance) What is the

overall performance of A11yScan compared with the state-
of-the-art accessibility testing tool?

• RQ2: (Evaluation of Scenario-driven Exploration) What
is the performance of scenario-driven exploration compared
with state-of-the-art UI exploration and GUI testing tools?

• RQ3: (Evaluation of Context-aware Detection) What is
the performance of context-aware detection for reducing
false positives of accessibility issues?

Dateset-1: We randomly selected 100 apps from F-Droid [68]
and Google Play [69], including 50 open-source apps and 50
closed-source apps of various types, such as social media and
shopping. This diversity was intentionally included to ensure
a broad representation of UI designs and user interactions.
Dataset-2: We obtained an available dataset of 20 apps that
were used as a part of their experiments from GPTDroid [31],
which was released from Themis benchmark [70].

A. RQ1: Evaluation of Overall Performance

1) Setup: To evaluate the effectiveness of A11yScan, we
compared the detection results of Dataset-1 with Xbot [7],
a state-of-the-art automated accessibility issue detection tool
with a higher activity coverage rate, utilizing Google Accessi-
bility Scanner [17]. We used Xbot and A11yScan respectively
to detect the number of accessibility issues in these apps while
recording the number of UI scenarios detected and the average
activity coverage. By comparing these results, we evaluated
the effectiveness of A11yScan in addressing false negatives of
existing accessibility testing tools.

TABLE II: Comparison results for effectiveness evaluation of
Issue Detection between A11yScan and Xbot.

Avg. act. cov. # UI scenarios # True Issues (# Reduced FPs)
Xbot 68% 460 2,321 (471)

A11yScan 75% 952 3,991 (1,070)

Furthermore, we recorded the execution time of the 100
apps in Dataset-1 and calculated the average time to show
A11yScan’s time performance, which helps us better under-
stand how A11yScan performs in practical use.

2) Result: The results for the effectiveness evaluation are
shown in Table II. The column “Avg. act. cov.” represents
average activity coverage while the column “# UI scenarios”
refers to the number of unique UI scenarios in the 100 apps ex-
plored by these two tools. It is worth noting that for scrollable
UI pages, A11yScan scrolls and captures screenshots until
the page becomes non-scrollable to detect accessibility issues.
Subsequently, A11yScan stitches these screenshots together,
considering all scrolling screenshots of the same UI page as
one new UI scenario. The column “# True Issues (# Reduced
FPs)” represents the total number of issues and false positives
in those issues detected by each tool in detected UI scenarios.
Since Xbot does not have the ability to identify false positives,
we manually went through all detected issues and filtered the
false positives accordingly. The difference is that the number
of false positives was counted automatically for A11yScan,
with the aid of its context-aware detection module.

Table II shows the performance of Xbot and A11yScan
in detecting accessibility issues. On the detected accessibility
issues, Xbot identified 2,321 true issues in 460 UI scenarios,
while A11yScan identified 3,991 true issues in 952 UI sce-
narios. There were 471 and 1,071 false positives respectively
that have been removed from the number of true issues
in their detection results. We conclude that A11yScan can
detect 1.7X (3,9912,321) more accessibility issues than Xbot fur-
ther validates A11yScan’s superiority in accurately detecting
more comprehensive issues by increasing the coverage of UI
scenarios. The experimental results present that A11yScan can
effectively mitigate false negatives resulting from insufficient
exploration. Specifically, the more detected issues can reduce
the false negative rate by 41.84% (3,991−2,321

3,991). Exploring
more accessibility issues, accompanied by more UI scenarios,
highlights the importance of improving UI scenario coverage
in detecting accessibility issues, which also indicates that
the scenario-driven UI exploration method has contributed
to reducing false negatives by exploring more UI scenarios.
Through extensive UI scenario coverage, A11yScan captures
the different attributes of UI components across different UI
scenarios, thereby detecting more potential accessibility issues
by identifying how UI components behave and present them-
selves in diverse UI states. Meanwhile, more comprehensive
UI exploration also brings higher activity coverage, with 0.68
of Xbot and 0.75 of A11yScan. And this advantage in activity
coverage is also attributed to the broader exploration of UI
scenarios.

In addition to evaluating the effectiveness of A11yScan in
UI scenario exploration and issue detection, we also recorded

TABLE III: Comparison results for effectiveness evaluation of
UI exploration between A11yScan and SceneDroid.

Avg. act. cov. # UI scenarios
SceneDroid 66% 661
A11yScan 75% 952

the execution time of A11yScan. According to our statistical
results, A11yScan takes an average of 15.15 minutes to
execute one app, while Xbot takes 2.52 minutes with simpler
UI exploration.

Answer to RQ1: Compared with the state-of-the-art acces-
sibility testing tool Xbot, A11yScan performs well in both
UI scenarios (460 vs. 952) and issue detection (2,321 vs.
3,991), with nearly twice as many UI scenarios and 1.7X
more issues, reducing the false negative rate by 41.84%.

B. RQ2: Evaluation of Scenario-driven Exploration
1) Setup: To evaluate A11yScan’s ability to explore UI

scenarios based on the scenario-driven exploration method, we
compared A11yScan with SceneDroid [38], a state-of-the-art
UI exploration tool, which is better than current existing app
testing tools in obtaining UI scenarios with the highest activity
coverage based on the experimental results in their paper. We
deployed SceneDroid to perform UI exploration on 100 apps
in Dataset-1 and record the number of UI scenarios explored
and the average activity coverage.

Besides, we also compared A11yScan with a recent state-
of-the-art GUI testing tool GPTDroid [31], which has been
proven to be superior to other GUI testing tools [29], [30],
[32], [71], [72]. Because GPTDroid is not open-sourced
and its tool and used dataset are not available, we used a
released dataset (i.e., Dataset-2), which is a part of their
experimental dataset (20/86) and compared them with their
shared experimental results in terms of activity coverage in
their pre-print version. We highlight that the average number of
activities used in Dataset-2 is 12, which is higher than their all
experimental dataset (12 vs. 9), therefore, the average Activity
coverage of these 20 apps should not differ significantly from
the overall average value (i.e., 71%) of their experimental apps.

2) Result: Table III shows the performance of SceneDroid
and A11yScan in exploring UI scenarios. The column “Avg.
act. cov.” represents average activity coverage while the col-
umn “# UI scenarios” refers to the number of unique UI
scenarios in the 100 apps explored by these two tools. On the
number of UI scenarios, SceneDroid and A11yScan explored
661 and 952 unique UI scenarios with activity coverage at 0.66
and 0.75, respectively. Remarkably, A11yScan outperforms the
state-of-the-art UI exploration tool SceneDroid, which high-
lights the effectiveness of the scenario-driven UI exploration
method adopted by A11yScan in achieving a more extensive
exploration of UI scenarios. Although SceneDroid focuses on
state changes triggered by interactions with UI components
on each UI scenario, such as drawers, it only focuses on
UI new scenarios directly generated by one interaction. The
advantage of A11yScan lies in considering the indirect changes
to a particular UI scenario caused by multiple interactions.
As shown in Fig. 1, user interaction flows of adding a

new category in CategoriesActivity can lead to the update
of MainActivity. There are usually transition relationships
between different activities in an app, and one Activity can be
launched through interaction with another Activity. Although
A11yScan can improve activity coverage by interacting with
other UI scenarios, it may be limited by factors such as data
and environment dependencies in some cases. This means
that even if efforts are made to increase the coverage of UI
scenarios, it may not be possible to fully cover all activities, as
some activities may depend on specific data or environmental
conditions that may be difficult to simulate or replicate.

The average activity coverage of A11yScan on Dataset-2
is 73%, and GPTDroid is 71% mentioned in their paper [31].
A11yScan achieved a comparable result on activity coverage
with GPTDroid. While the LLM-enhanced approach would
have more advantages in launching activities on filling more
valuable inputs in EditText, thereby improving the activity
coverage, A11yScan also uses a more comprehensive scenario-
driven UI exploration strategy to explore more activities and
scenarios, which can complement each other in UI explo-
ration. In terms of required effort, A11yScan achieves high
activity and UI scenario coverage with minimal effort and
high automation by combining static and dynamic analysis. In
contrast, LLM-based GUI testing tools often require substan-
tial computational resources for inference and may still need
manual intervention to fine-tune model behavior and handle
specific app contexts, leading to increased complexity and
effort. Due to the unavailability of GPTDroid, the ability of UI
exploration cannot be further compared in our experiments.

Answer to RQ2: Compared with the leading UI exploration
tool SceneDroid, A11yScan can explore more UI scenarios
(661 vs. 952), which is attributed to the novel scenario-
driven UI exploration. Additionally, when compared with
the recent state-of-the-art GUI testing tool utilizing the
cutting-edge technique LLM, A11yScan maintains compa-
rable activity coverage, highlighting its effectiveness.

C. RQ3: Evaluation of Context-aware Detection

1) Setup: To evaluate A11yScan’s ability to reduce false
positives based on the context-aware detection method, we
investigated how many issues can be filtered by such a method.
We also investigated the different types of detected false
positive issues and their corresponding characteristics.

To validate the accuracy of A11yScan in identifying false
positives, we conducted a user study. We recruited three
participants familiar with app development from our univer-
sity and provided them with training to acquire professional
knowledge and identification skills for accessibility issues.
For example, using WCAG2.1 [41] as a unified guideline to
explain accessibility standards in detail to participants. Then,
we provided data from A11yScan’s results on a randomly
selected 20 apps with a total of 963 detected issues to
them, which included UI screenshots that highlighted marked
accessibility issues. In these screenshots, potential true issues
and false positives were explicitly marked. Then, the first
two participants independently marked the issues detected

Fig. 6: Issue proportion after runtime context-aware analysis.

by A11yScan for correctness, distinguishing between actual
issues and false positives. Subsequently, the third participant
reviewed the assessments of the first two participants, focusing
on areas of inconsistency in the markings and making the final
judgment. Finally, we documented and analyzed the results
and feedback from all participants to understand A11yScan’s
performance in identifying and categorizing accessibility is-
sues, particularly in handling false positives.

2) Result: During the phase of the context-aware detec-
tion method, A11yScan constructs and uses resource trees
containing rich contextual information to assist in identifying
accessibility issues and false positives, and the results are
shown in Fig. 6. “FP (Caused by External Dependency)”
represents External Dependency and Invalid issues recognized
by A11yScan, “FP (Caused by UI Presentation)” represents
UI Presentation issues, and “FP (Caused by UI Design)”
represents UI Design issues. These types of issues are all false
positives that are not necessarily problematic in the actual use
of the app. From the experimental results, the number of false
positives caused by these three reasons introduced above is
564, 371, and 135, respectively. Their total accounts for 21%
of all detected issues, which demonstrates the necessity and
effectiveness of using context-aware analysis in A11yScan.

In these false positives, External Dependency issues, as well
as UI Presentation issues, arise from the lack of contextual
information, leading to incorrect identification by detection
tools, which are not actual accessibility issues of the app and
are meaningless to developers. Therefore, these issues are not
reported in the issue reports. Note that, despite appearing to
violate accessibility standards, our investigation reveals that
most users and app developers view special UI design issues
(135/1,070 FPs) as improvements to the overall user experi-
ence rather than accessibility issues, making them contentious
regarding their accessibility impact and therefore classified as
false positives, requiring special consideration. By offering
precise issue reports that identify and annotate these cases,
we assist developers in balancing user experience enhance-
ment with app accessibility. Since these design decisions are
intentional, the final decision on whether to fix these issues is
left to the developers.

After manual verification by three participants, they identi-
fied 154 true false positives among 963 issues in 20 apps,
while A11yScan detected 170 false positives, resulting in
an accuracy rate of 90.56%. The causes of the remaining
16 misjudgments are as follows. (1) The attributes of some
components dynamically change in the code, resulting in
inconsistency with the pre-defined attributes obtained from
decompiled resource files. (2) Some dynamically added com-

ponents may not have a parent or sibling node, which makes it
difficult to obtain valuable contextual information on attributes
and hierarchy during accessibility detection. This resulted in
discrepancies between the resource trees of the source file
obtained by decompiling and the resource tree of the current
page components, leading to erroneous judgments. Addition-
ally, we found that the construction of resource trees facilitates
rapid and accurate manual verification of issues. For instance,
the contextual information about components provided by
resource trees helps to verify whether components belong to
External Dependency. These findings demonstrate the vital
role of resource trees in providing contextual information in
A11yScan.

Answer to RQ3: A11yScan can help reduce 21% false
positive rate on our collected dataset caused by three types
of reasons, which is attributed to the novel context-aware
detection method. The false positive detection accuracy is
90.56% verified by a user study.

V. DISCUSSION

A. Limitations

The limitations of A11yScan are as follows: (1) Although
A11yScan has increased the coverage of UI scenarios, we
still face limitations such as data dependency and environ-
ment dependency in further improving activity coverage. The
initiation of certain activities may depend on specific data or
environmental conditions, which are difficult to simulate or
replicate. (2) In addition, using randomly generated inputs to
fill EditText components performs average in complex scenar-
ios. Although the result of Activity coverage is comparable
with the GPTDroid shown in Section IV-B, for the ability
to fill up for specific types of input requirements, cutting-
edge techniques like the large language model would somehow
help by combining the traditional methods. Therefore, we will
attempt to incorporate the LLM-enhanced approach in the
future to further enhance our UI exploration capabilities. (3)
Furthermore, A11yScan uses the newly-defined checking rule
for accessibility detection, and it may overlap some accessibil-
ity issues that only arise when using assistive services (such as
screen readers). Therefore, in future research, a combination
of both rules and assistive technology should be considered to
obtain the best detection results.

B. Threats to Validity

While our selected apps of experimental subjects in Sec-
tion IV cover a diverse range of representative open-source and
closed-source apps, certain specific types of apps may not have
been fully considered, perhaps with unique characteristics,
which limits our assessment of A11yScan’s generalization
ability in different app types.

C. Cross-Platform Application

Applying A11yScan to platforms beyond Android is feasi-
ble and meaningful, as accessibility standards and the severity
of issues are unified across platforms. Although the design
frameworks vary across different platforms, the core method-
ology and technology of A11yScan can be applied to other

platforms through targeted adjustments and optimizations to
detect accessibility issues. However, challenges may arise
during implementation, as the tool is specifically designed
for Android applications and relies on Android-specific frame-
works and APIs, necessitating effort for specific adjustments.

VI. RELATED WORK

A. Accessibility Testing

Accessibility testing is crucial for ensuring that Android
apps are usable by all users, including those with disabil-
ities. As we thoroughly introduced in Section II, there are
a large number of tools that have been proposed to test the
accessibility of apps, including static analysis tools [13], [14],
[16] and dynamic analysis tools (i.e., manual dynamic method
[17], [19], [20], [53], [54], [73], script-based dynamic method
[21]–[23], [55]–[57], and automated dynamic method [7], [24],
[58]–[60]). Compared with these existing accessibility testing
tools, owing to the new proposed techniques (i.e., scenario-
driven UI exploration and context-aware issue detection) in
this paper, A11yScan performs significantly better than the
current state-of-the-art methods (details in Section IV-A).

B. UI Exploration

Automated UI exploration tools are an important component
of mobile app testing. Many automated UI exploration tools
have been proposed and used in Android. Many automated
UI exploration tools have been researched such as ATG [74],
WTG [75], STG [76], and Storyboards [36], [37], [77], and
SceneDroid [38]. They built different graphs with different
granularity to help explore the UI pages of Android apps.
Among them, although Storyboard has achieved good results
in UI page exploration, it tends to overlook the importance
of interactive components on the page and is slightly lacking
in the ability to obtain new activity-dependent UI scenarios.
SceneDroid demonstrates its advantage in extracting activity-
dependent UI scenarios but falls short in addressing dynam-
ically generated UI states resulting from user interactions.
Overall, although there are various Android automated page
exploration tools available, they are limited to the coverage
of UI scenarios. Compared with them, A11yScan achieves
a significantly higher coverage of UI scenarios (details in
Section IV-B) by leveraging two key strategies in the technique
of scenario-driven UI exploration (details in Section III-A).

VII. CONCLUSION

In this paper, we proposed A11yScan to automatically test
and detect accessiblity issues for Android apps. Compared
with the existing tools, A11yScan achieves significantly better
performance in both UI scenario exploration and issue detec-
tion, which reduces the hidden danger of false negatives. Addi-
tionally, A11yScan introduces a context-aware issue detection
to reduce false positives. The experimental results demonstrate
its effectiveness and efficiency.

ACKNOWLEDGMENT

This work was partially supported by the National Natural
Science Foundation of China (Grant No. 62472309).

REFERENCES

[1] N. Hassan, S. O. Gillani, and M. S. Nawaz, “Mobile applications
for people with disabilities: Barriers and opportunities,” Journal of
Accessibility and Design for All, vol. 10, no. 2, pp. 120–140, 2020.

[2] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock, “An
epidemiology-inspired large-scale analysis of Android app accessibility,”
ACM Transactions on Accessible Computing (TACCESS), vol. 13, no. 1,
pp. 1–36, 2020.

[3] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in Android
apps: state of affairs, sentiments, and ways forward,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). New
York, NY, USA: Association for Computing Machinery, 2020, pp. 1323–
1334. [Online]. Available: https://doi.org/10.1145/3377811.3380392

[4] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock, “Examining
image-based button labeling for accessibility in Android apps through
large-scale analysis,” in Proceedings of the 20th International ACM
SIGACCESS Conference on Computers and Accessibility. ACM, 2018,
pp. 119–130.

[5] W. H. Organization et al., World Report on Disability 2011. World
Health Organization, 2011.

[6] C. Vendome, D. Solano, S. Liñán, and M. Linares-Vásquez, “Can
everyone use my app? An empirical study on accessibility in Android
apps,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2019, pp. 41–52.

[7] S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu, “Accessible
or not? an empirical investigation of android app accessibility,” IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 3954–3968,
2021.

[8] Y. Zhang, S. Chen, L. Fan, C. Chen, and X. Li, “Automated and
context-aware repair of color-related accessibility issues for android
apps,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1255–1267. [Online].
Available: https://doi.org/10.1145/3611643.3616329

[9] S. Chen, Y. Zhang, L. Fan, J. Li, and Y. Liu, “Ausera: Automated
security vulnerability detection for android apps,” in Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1–5.

[10] S. Yan and P. Ramachandran, “The current status of accessibility in
mobile apps,” ACM Transactions on Accessible Computing (TACCESS),
vol. 12, no. 1, p. 3, 2019.

[11] C. Silva, M. M. Eler, and G. Fraser, “A survey on the tool support for the
automatic evaluation of mobile accessibility,” in Proceedings of the 8th
International Conference on Software Development and Technologies for
Enhancing Accessibility and Fighting Info-exclusion, 2018, pp. 286–293.

[12] J. Zhu, K. Li, S. Chen, L. Fan, X. Xie et al., “A comprehensive study
on static application security testing (sast) tools for android,” IEEE
Transactions on Software Engineering, 2024.

[13] PMD, “PMD,” https://pmd.github.io, 2023, accessed on 27 April 2023.
[14] Checkstyle, “Checkstyle,” https://checkstyle.sourceforge.io, 2023, ac-

cessed on 27 April 2023.
[15] FindBugs, “FindBugs,” http://findbugs.sourceforge.net, 2023, accessed

on 27 April 2023.
[16] Google, “Lint,” 2021. [Online]. Available: https://developer.android.

com/studio/write/lint
[17] ——, “Accessibility Scanner,” 2021. [Online]. Available: https:

//developer.android.com/studio/intro/accessibility/scanner
[18] Microsoft, “Accessibility Insights,” 2023. [Online]. Available: https:

//accessibilityinsights.io/
[19] IBM Corporation, “IBM Accessibility Checklist,” https://www.ibm.com/

able/guidelines/ci162/accessibility-checklist.html, 2023, accessed: April
26, 2023.

[20] N. Salehnamadi, Z. He, and S. Malek, “Assistive-technology aided
manual accessibility testing in mobile apps, powered by record-and-
replay,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–20.

[21] N. Patil, D. Bhole, and P. Shete, “Enhanced UI Automator Viewer
with improved Android accessibility evaluation features,” in 2016 Inter-
national Conference on Automatic Control and Dynamic Optimization
Techniques (ICACDOT). IEEE, 2016, pp. 977–983.

[22] L. Ardito, R. Coppola, M. Morisio, and M. Torchiano, “Espresso vs.
eyeautomate: An experiment for the comparison of two generations of
android gui testing,” in Proceedings of the Evaluation and Assessment
on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 13–22. [Online]. Available:
https://doi.org/10.1145/3319008.3319022

[23] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham,
and S. Malek, “Latte: Use-case and assistive-service driven automated
accessibility testing framework for Android,” in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, 2021, pp.
1–11.

[24] N. Salehnamadi, F. Mehralian, and S. Malek, “Groundhog: An au-
tomated accessibility crawler for mobile apps,” in 37th IEEE/ACM
International Conference on Automated Software Engineering, 2022, pp.
1–12.

[25] K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
94–105. [Online]. Available: https://doi.org/10.1145/2931037.2931054

[26] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 245–256. [Online].
Available: https://doi.org/10.1145/3106237.3106298

[27] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 269–280.

[28] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
generating high-quality test inputs for android apps via use case
combinations,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 469–480.
[Online]. Available: https://doi.org/10.1145/3377811.3380382

[29] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2019, pp. 1070–1073.

[30] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 153–164. [Online].
Available: https://doi.org/10.1145/3395363.3397354

[31] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, X. Che, D. Wang, and
Q. Wang, “Make llm a testing expert: Bringing human-like interaction
to mobile gui testing via functionality-aware decisions,” arXiv preprint
arXiv:2310.15780, 2023.

[32] Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu, and Q. Wang,
“Fill in the blank: Context-aware automated text input generation for
mobile gui testing,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), 2023, pp. 1355–1367.

[33] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 797–802.

[34] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global android banking
apps,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, 2020, pp. 1310–1322.

[35] D. Lai and J. Rubin, “Goal-driven exploration for android applications,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2019, pp. 115–127.

[36] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
rydroid: Automated generation of storyboard for android apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 596–607.

[37] S. Chen, L. Fan, C. Chen, and Y. Liu, “Automatically distilling sto-
ryboard with rich features for android apps,” IEEE Transactions on
Software Engineering, vol. 49, no. 2, pp. 667–683, 2022.

[38] X. Zhang, L. Fan, S. Chen, Y. Su, and B. Li, “Scene-driven exploration
and gui modeling for android apps,” in 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2023, pp. 1251–1262.

https://doi.org/10.1145/3377811.3380392
https://doi.org/10.1145/3611643.3616329
https://pmd.github.io
https://checkstyle.sourceforge.io
http://findbugs.sourceforge.net
https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint
https://developer.android.com/studio/intro/accessibility/scanner
https://developer.android.com/studio/intro/accessibility/scanner
https://accessibilityinsights.io/
https://accessibilityinsights.io/
https://www.ibm.com/able/guidelines/ci162/accessibility-checklist.html
https://www.ibm.com/able/guidelines/ci162/accessibility-checklist.html
https://doi.org/10.1145/3319008.3319022
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3377811.3380382
https://doi.org/10.1145/3395363.3397354

[39] Google, “Accessibility Testing Framework,” 2021. [Online]. Available:
https://github.com/google/Accessibility-Testing-Framework

[40] W. W. W. C. (W3C), “Web Content Accessibility Guidelines (WCAG)
2.0,” 2008. [Online]. Available: https://www.w3.org/TR/WCAG20/

[41] ——, “Web Content Accessibility Guidelines (WCAG) 2.1,” 2018.
[Online]. Available: https://www.w3.org/TR/WCAG21/

[42] G. Inc., “Google Accessibility,” 2021. [Online]. Available: https:
//developer.android.com/guide/topics/ui/accessibility

[43] I. O. for Standardization (ISO), Ergonomics of human-system interaction
- Part 210: Human-centred design for interactive systems. ISO, 2019.
[Online]. Available: https://www.iso.org/standard/77520.html

[44] U. S. A. Board, “Revised 508 standards - united states access
board,” 2017. [Online]. Available: https://www.access-board.gov/
guidelines-and-standards/communications-and-it/about-the-ict-refresh/
final-rule/text-of-the-standards-and-guidelines

[45] H. Swan, B. G. F. Williams, B. J. Avilla et al., “Draft bbc mobile
accessibility standards and guidelines,” BBC internet blog, 2013.

[46] G. D. Service, “Accessibility Guidance - Government Digital
Service,” 2021. [Online]. Available: https://www.gov.uk/guidance/
accessibility-requirements-for-public-sector-websites-and-apps

[47] Google, “Android Accessibility Developer Guidelines,”
https://developer.android.com/guide/topics/ui/accessibility/, 2023,
accessed: April 26, 2023.

[48] A. Inc., “Apple Accessibility Developer Guidelines,” https://developer.
apple.com/accessibility/, 2023, accessed: September 30, 2023.

[49] U.S. Department of Justice, “Americans with disabilities act,” https://
www.ada.gov/, 1990, accessed: 26-April-2023.

[50] Federal Communications Commission, “Communications
and video accessibility act,” https://www.fcc.gov/general/
communications-and-video-accessibility-act-cvaa, 2010, [Accessed:
26-April-2023].

[51] U. Nations, “Convention on the rights of persons with disabilities,” 2006.
[Online]. Available: https://www.un.org/development/desa/disabilities/
convention-on-the-rights-of-persons-with-disabilities.html

[52] E. Union, “Communication from the commission to the
european parliament, the council, the european economic and
social committee, and the committee of the regions: European
accessibility act - accessible europe: European accessibility act,”
2016. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:52016DC0628&from=EN

[53] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond, “Automated detection
of talkback interactive accessibility failures in android applications,” in
2022 IEEE Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2022, pp. 232–243.

[54] L. Burkhart, “Stepping stones to switch access,” Perspectives of the
ASHA Special Interest Groups, vol. 3, no. 12, pp. 33–44, 2018.

[55] R. C. Grüner, M. Dziadzka, J. Lerch, and V. Daburon, “Robotium: An
android test automation framework,” in Proceedings of the 6th Inter-
national Conference on Mobile Technology, Applications, and Systems.
Association for Computing Machinery, 2009, pp. 1–8.

[56] I. Pivotal Software, “Robolectric: Unit testing android in the jvm,” in
Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services Companion. Association for Computing
Machinery, 2012, pp. 317–318.

[57] Appium. (2023) Appium. Appium Community. Accessed on 26th April
2023. [Online]. Available: http://appium.io

[58] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser, “Automated accessibility
testing of mobile apps,” in 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 2018, pp.
116–126.

[59] P. Xu, L. Li, Z. Liang, G. Wang, W. Li, T. Li, and J. Chen, “PUMA:
Programmable ui-automation for large-scale dynamic analysis of mo-

bile apps,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2019, pp. 473–488.

[60] ForApp, “forApp Mobile Accessibility Inspection Solution,” http://www.
forapp.org, April 2018.

[61] M. C. Burnett, J. D. Hollan, and S. R. M. Epsilonlroy, “Monkey:
a tool for exploring the accessibility of software user interfaces,” in
Proceedings of the 2005 ACM SIGCHI International Conference on
Human-Computer Interaction. ACM, 2005, pp. 421–430. [Online].
Available: https://doi.org/10.1145/1054972.1055033

[62] Google, “Monkeyrunner,” 2021. [Online]. Available: https://developer.
android.com/studio/test/monkeyrunner

[63] J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, and B. Liang, “Multiple-entry
testing of Android applications by constructing activity launching
contexts,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 457–468.
[Online]. Available: https://doi.org/10.1145/3377811.3380347

[64] Y. Li, J. Ouyang, B. Mao, K. Ma, and S. Guo, “Data flow analysis on
android platform with fragment lifecycle modeling and callbacks,” EAI
Endorsed Transactions on Security and Safety, vol. 4, no. 11, 12 2017.

[65] R. Rivest, “The md5 message-digest algorithm,” Tech. Rep., 1992.
[66] Google, “UI Automator,” 2021. [Online]. Available: https://developer.

android.com/training/testing/ui-automator
[67] Google Developers, “Android debug bridge (adb),” https://developer.

android.com/studio/command-line/adb, 2023, accessed: 2023-11-18.
[68] F-Droid. (2022) F-Droid. [Online]. Available: https://f-droid.org
[69] G. Play. (2022) Google Play Store. [Online]. Available: https:

//play.google.com
[70] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for

android against real-world bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2021.
New York, NY, USA: Association for Computing Machinery, 2021, p.
119–130. [Online]. Available: https://doi.org/10.1145/3468264.3468620

[71] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
23–26.

[72] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
481–492. [Online]. Available: https://doi.org/10.1145/3377811.3380402

[73] B. Leporini, M. C. Buzzi, and M. Buzzi, “Interacting with mobile
devices via voiceover: usability and accessibility issues,” in Proceedings
of the 24th Australian computer-human interaction conference, 2012, pp.
339–348.

[74] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 641–660. [Online]. Available:
https://doi.org/10.1145/2509136.2509549

[75] S. Yang, H. Wu, H. Zhang et al., “Static window transition graphs
for Android,” Automated Software Engineering, vol. 25, pp. 833–873,
2018. [Online]. Available: https://doi.org/10.1007/s10515-018-0237-6

[76] D. Lai and J. Rubin, “Goal-driven exploration for Android applications,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2019, pp. 115–127.

[77] Y. Zhang, S. Chen, and L. Fan, “A web-based tool for using storyboard
of android apps,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2023, pp. 117–121.

https://github.com/google/Accessibility-Testing-Framework
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG21/
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://www.iso.org/standard/77520.html
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.gov.uk/guidance/accessibility-requirements-for-public-sector-websites-and-apps
https://www.gov.uk/guidance/accessibility-requirements-for-public-sector-websites-and-apps
https://developer.android.com/guide/topics/ui/accessibility/
https://developer.apple.com/accessibility/
https://developer.apple.com/accessibility/
https://www.ada.gov/
https://www.ada.gov/
https://www.fcc.gov/general/communications-and-video-accessibility-act-cvaa
https://www.fcc.gov/general/communications-and-video-accessibility-act-cvaa
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0628&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0628&from=EN
http://appium.io
http://www.forapp.org
http://www.forapp.org
https://doi.org/10.1145/1054972.1055033
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://doi.org/10.1145/3377811.3380347
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://f-droid.org
https://play.google.com
https://play.google.com
https://doi.org/10.1145/3468264.3468620
https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1007/s10515-018-0237-6

	Introduction
	Background
	UI scenarios of Android Apps
	Accessibility Standards
	Accessibility Testing Tools
	Static Analysis
	Dynamic Analysis

	Approach
	Scenario-driven UI Exploration
	Initial State Exploration
	Enhanced State Re-exploration

	Context-aware Issue Detection
	ATF-based Accessibility Checks
	Runtime Context-aware Analysis

	Experiments
	RQ1: Evaluation of Overall Performance
	Setup
	Result

	RQ2: Evaluation of Scenario-driven Exploration
	Setup
	Result

	RQ3: Evaluation of Context-aware Detection
	Setup
	Result

	Discussion
	Limitations
	Threats to Validity
	Cross-Platform Application

	Related Work
	Accessibility Testing
	UI Exploration

	Conclusion
	References

