
Peeking into the Gray Area of Mobile World:
An Empirical Study of Unlabeled Android Apps

Sen Chen1, Lingling Fan2∗, Cuiyun Gao3, Fu Song4, and Yang Liu5
1College of Intelligence and Computing, Tianjin University, China

2College of Cyber Science, Nankai University, China 3Harbin Institute of Technology (Shenzhen), China
4ShanghaiTech University, China 5Nanyang Technological University, Singapore

Abstract—For the real-world dataset collected by our indus-
trial partner, Pwnzen Infotech Inc., one of the leading industrial
security companies, there are a large number of unlabeled
Android applications (called unlabeled apps in this paper) that
are unlikely to belong to known Android malware families nor
ordinary benign apps according to the industrial black-list (i.e.,
signatures) and white-list (i.e., certificates). However, such apps
have rarely been studied previously, but are important to peek
into the gray area of mobile world. It is a time-consuming task
for software analysts to understand the negative characteristics of
these samples, which would lead to potential security or privacy
threats for app users, significantly negative impacts on mobile
system performance, and bad user experience, etc.

To investigate the characteristics of these industrial unlabeled
apps in a large-scale in practice, and provide insights to industrial
software analysts as well as research communities, we collect a
large-scale dataset of unlabeled apps (i.e., 22,886 in total) from
our industrial partners. Given the common industrial perception
of software analysts that a high percentage of these unlabeled
apps could have some similar behaviors, we leverage the popular
community-detection techniques based on widely-used app fea-
tures in malware detection to cluster these unlabeled apps. After
that, we investigate the common behaviors for different clusters
with substantial human efforts and also conduct cross-validation
across co-authors to check the results. Our manual analysis
unveils the characteristics of these unlabeled apps by sampling
data from different clusters, and discovers 11 categories, some of
which have never been discovered by previous grayware research.
Besides, from our exploration, we find that the community-
based techniques are not effective enough in clustering unlabeled
apps, so that manual analysis is encouraged. Manual analysis is
an important first step towards studying unlabeled apps and
understanding their characteristics. Finally, we highlight the
lessons learned through real case studies, comparison study with
existing malware/grayware research, in-depth discussion with
industrial partners, and feedback from industrial partners.

I. INTRODUCTION

Android apps now have become the most popular way
of performing daily tasks [1], [2], however, more and more
mobile users suffer from Potentially Harmful Apps (PHAS)
(e.g., Android malware [3] and Android grayware [4]). Con-
sequently, a rapidly growing amount of software-engineering
research focuses on studies and analysis of Android apps [5],
[6], [7], [8], [9], [10]. Such research growth also thanks to the
availability of real dataset of Android apps or Android mal-
ware from industry [11], [5], [9] such as Tencent Inc. [12] and
Qihoo 360 [13]. Note that, the real-world samples collected

Lingling Fan is the corresponding author. Email: linglingfan@nankai.edu.cn

by industrial companies are usually with concrete labels such
as malicious and benign, which promotes the corresponding
data-driven research in academia [14], [15], [16], [17].

Nevertheless, our industrial partner, Pwnzen Infotech Inc.,
one of the leading security companies with rich security
experience and advanced technology, recently unveils that
there are a large number of industrial unlabeled Android
applications (called unlabeled apps) that are unlikely to belong
to known families of Android malware nor ordinary benign
apps according to the black-list (i.e., signatures) and white-
list (i.e., certificates) of the industry. Note that, these unlabeled
apps are crawled from various Android markets including the
official market (Google Play) and other third-party markets.
Some of them are collected by monitoring the network traffic.
Such unlabeled apps can be regarded as a peephole to observe
the gray area of mobile world. However, it is difficult to
understand the characteristics of these samples for software
analysts in a large-scale in practice due to the unknown
property and possible diversity of categories. Therefore, there
is a great demand to conduct an empirical study on these in-
dustrial unlabeled apps and provide insights to both academia
and industry, avoiding introducing potential threats for app
users (e.g., security, privacy, and negative impacts). Given
that it is challenging and even infeasible to conduct a large-
scale curation and analysis of these unlabeled apps without
collaboration with industry, we have started collaborating with
our industrial partner to get access to the unlabeled dataset and
exchange insights with people from industry.

Our collaborator allows us to gain access to the large-
scale industrial samples as well as the ensemble industrial
scanning engine used to label samples. The scanning engine
is shared across several security companies such as Qihoo
360 [13], and the signatures of samples stored in the scanning
engine are updated timely for accurately filtering out Android
malware and benign apps. For industry, it is a common practice
to maintain a “black list” storing the signatures of known
malware families and a “white list” storing known benign apps
such as official certificates [5]. The others are then categorized
as “industrial unlabeled apps”, indicating that they are unlikely
to belong to any known malware families or known benign
apps in the official markets.

A common industrial perception of these unlabeled apps
is that a high percentage of them share similar behaviors,
therefore, unlabeled apps may be classified into different cate-

gories based on their behaviors. According to this observation,
we take these unlabeled apps collected from our industrial
partner as our initial starting point to identify and analyze
unlabeled apps, by employing the widely-used community-
based technique in Android malware field [18]. Note that,
different from the malware-specific features (e.g., semantic,
security-related, and context-aware features) extracted for An-
droid malware detection, whose goal is to distinguish malware
from samples [19], [20], [14], [21], [22], the features extracted
for unlabeled app analysis are more general since we aim
to investigate the characteristics of these unlabeled apps as a
whole. Fig. 1 shows that the data preprocessing and sampling
phases are two initial phases for our study, while the core phase
is to conduct an in-depth investigation of these unlabeled apps
in order to understand their characteristics, which sheds light
on the follow-up research towards unlabeled apps.

In this paper, we attempt to use the widely-used feature
types [14], [21] and community-based techniques [18] in
malware research to cluster these unlabeled apps. However,
the clustering results are also not effective enough in our
study, but a coarse-grained filtering can reduce the analysis
efforts, to some extent. So in this paper, instead of relying
on the clustering technique for accurate app grouping, we
adopt the technique to select some representative samples for
study, and manually classify these sampled apps based on their
characteristics. We sample 375 apps from the unlabeled apps
by the sampling criteria to conduct manual analysis (details
in Section III-B). We observe that a lot of unlabeled apps
share common characteristics. Based on our investigation, we
finally summarize 11 categories of unlabeled apps based on
their common characteristics.

We reach out the following findings from our manual
analysis: 1) We distill 11 categories of unlabeled apps. Some
categories are similar to a number of previously-identified
grayware categories [4], showing that our study is able to
identify several grayware categories pointed out by the pre-
vious studies. The previous grayware study [4] only focused
on the apps collected from Google Play Store, in this paper,
we distill more categories and understanding of the gray
area of the mobile world, which thanks to the real dataset
from industry instead of only the official Android market.
Consequently, 8 new categories and 2 more general categories
are discovered based on our analysis. Further, our newly
labeled data can be published as a benchmark dataset of
grayware to foster further classification between grayware and
other app types. 2) Among our identified categories, apps in
several categories have potential security threats for users,
such as Dialing/SMS-Managing Apps, Data Collection Apps,
Porn Apps, and Background Service Apps. To demonstrate
the common behaviors in different categories of unlabeled
apps, we also conduct a case study on several categories to
provide more insights for academic researchers and industrial
analysts. 3) According to the results of our manual analysis,
we also find that some behaviors of unlabeled apps may unveil
special industrial profit chain in the real world. After that, we
highlight the lessons learned through an in-depth discussion

with industrial partner and feedback from industry.
In summary, this paper makes the following contributions:
• To the best of our knowledge, this is the first work

systematically curating and analyzing industrial unlabeled
Android apps based on a large-scale dataset collected from
the industrial company instead of limited case studies.

• We discovered 11 categories of unlabeled apps based on
their internal characteristics and community unit by lever-
aging community-based clustering and substantial manual
analysis. Among these categories, 8 new categories and
2 more general categories are discovered compared to
previous grayware studies, which can also be published
as a new benchmark dataset of grayware.

• We also provide the corresponding case studies on inter-
esting unlabeled app categories and highlight the lessons
learned from the study, which motivates the follow-up
research on unlabeled apps, and helps industrial companies
better characterize unlabeled apps.

II. RELATED WORK

A. Analysis of Android Malware
In practice, most of the researchers’ and practitioners’

efforts target Android malware detection and understanding.
Consequently, various approaches have been exhibited in this
area, such as signature-based [23], behavior-based [24], data-
flow analysis-based (e.g., taint analysis) [25], [26], model
checking-based [27], [28], and machine-learning-based tech-
niques [14], [21], [17], [22], [29], [30], [31], [32]. However, in
the initial research stage of Android malware, manual analysis
and sample clustering are widely-used due to lack of enough
labeled samples and insights of malware characteristics [3],
[33], [18]. For example, in Genome project [3], Jiang et
al. analyzed 1,260 malware samples and summarized their
corresponding characteristics by an in-depth manual analysis
study. Samra et al. [33] analyzed Android malware by lever-
aging clustering techniques. In this work, following the initial
research of Android malware, we first perform an empirical
investigation of industrial unlabeled Android apps through
manual study. In practice, in a new research direction for both
academia and industry, manual analysis is encouraged in an
initial stage to analyze the characteristics of the objects. To
facilitate our study, we also use a similar community-based
technique used in [34] to cluster the unlabeled apps. Note
that, the feature extraction mechanism is different from that
in these two tasks (i.e., malware and clustering), because our
goal of proposing the data sampling shown in Fig. 1 is not to
achieve a high accuracy for malware detection, but to find a
promotive way for manual analysis of unlabeled apps.

B. Analysis of Android Grayware
Andow et al. [4] primarily focused on the Android grayware

collected from Google Play Store. They developed lightweight
heuristics to identify Android grayware, which primarily
combines text analytics by using app reviews. However, the
published app dataset is limited to apps that pass the malware
detection process of Google Play Store. In contrast, there

o Taxonomy Analysis of Unlabeled Apps

o Case Study in Different Categories

o Lessons Learned for Academia and Industry

(a) Data Preprocessing

Large-Scale App
Collection from Industry

Black and White Lists
Filtering

Feature
Extraction

Community-based
Clustering

Unlabeled
Apps

Clusters

(b) Data Sampling
Empirical Investigation of Unlabeled Apps

Sampled
Data

Fig. 1: Workflow of our study

is also a prevailing opinion that simply treating grayware
as malware can expose users’ privacy [35]. Moreover, there
also exists a neutral definition that grayware can legitimately
collect user information [36], so the users are willing to trust
the data collection when they use apps or they just ignore
the potential risks induced by the apps. Overall, it is an
initial study on Android grayware with several limitations. In
this work, the dataset collected from our industrial partner is
filtered by an ensemble industrial scanning engine, which is
better initially processed than the samples only collected from
Google Play Store directly. In addition, previous work lacks
manual analysis to further understand the characteristics and
behaviors of the apps. Our manual analysis on the industrial
unlabeled apps unveils that several categories of unlabeled
apps belong to grayware introduced in the first grayware
work [4]. Furthermore, we also inspect several new categories
to foster further research.

C. Analysis of Android Apps
A large number of studies focus on analysis of Android

apps based on the large-scale dataset collected from industrial
companies or commercial Android markets [6], [37], [38]. For
example, Fan et al. [6] investigated the characteristics of fail-
stop errors in Android apps (i.e., app crashes) in order to
help to understand the cause of app crashes, avoid inducing
such errors during app development, and improve the quality
of Android apps. Wei et al. [37], [38] studied the character-
istics of compatibility issues due to Android fragmentation,
including the root causes and the common patches, to help
to detect such fragmentation-induced compatibility issues in
Android apps. However, existing work focuses on improving
the quality, rather than understanding the characteristics of app
itself. Our work focuses on this scope regarding the industrial
unlabeled apps.

III. WORKFLOW OF OUR STUDY

In this section, we first briefly introduce the study design,
and then introduce the data preprocessing and sampling pro-
cess on a large number of unlabeled apps from our industrial
partner. After that, with the help of existing academic cluster-
ing algorithm [18], we take an in-depth investigation on the
characteristics of these apps by employing manual analysis.

Fig. 1 shows our study workflow, which contains three main
phases. (1) Data preprocessing starts with the “unlabeled An-
droid apps”, which fail to be categorized into either malware
families or benign samples when being filtered by an ensemble
industrial scanning engine; (2) Data sampling distillates the
data from the majority of the unlabeled app clusters according

to the clustering results, the sampled data is further used
for manual analysis. (3) We further conduct manual analysis
to investigate the common behaviors in different clustered
categories with substantial efforts. To ensure the reliability of
the analysis results, we cross-validate the results among three
of the co-authors. We accept the categorization results only
when all of us agree on it. Apart from the in-depth analysis,
we demonstrate the characteristics of unlabeled apps in each
category through a case study.

A. Data Preprocessing
Data preprocessing mainly contains two steps: Data col-

lection and Data filtering. We collect the “unlabeled Android
samples” from our industrial partner, Pwnzen Infotech Inc..
Our partner crawls from various Android markets including
Google Play and other third-party markets, and also tracks
the network traffic under a control environment from 2017
to 2020 and obtains the APK files. Before storing these apps
on the server, an ensemble scanning engine including several
industrial scanning engines (e.g., Qihoo 360 and Pwnzen In-
fotech Inc.) is used to classify these collected samples. The en-
semble engine is based on the black-list (e.g., malicious code
signatures) and white-list (e.g., official certificates) provided
by these industrial companies. The black-list and white-list are
timely updated and shared between these industrial companies.
According to the scanning result of the ensemble engine, the
malicious apps are identified and collected for further malware
analysis [21], [22] to extract new malicious features. The
benign apps are filtered and collected for app quality anal-
ysis. The remaining ones are “Unlabeled”. Such “Unlabeled”
samples fail to be categorized into neither malware families
nor ordinary benign samples according to the black-list and
white-list. The industrial companies collected thousands of
such unlabeled apps, which would lead to potential security
or privacy threats for app users. Negative impacts on mobile
system performance and user experience also occur in these
apps. Therefore, it is urgent and essential to understand the
characteristics of these samples for industrial companies like
our partner, which calls for further collaboration with us. To
investigate and understand the characteristics of these apps,
we finally collect 22,886 unlabeled apps in total to conduct
an empirical investigation.

B. Data Sampling
To investigate the characteristics of unlabeled apps, we

first employ the community detection technique based on
the extracted features to cluster unlabeled apps into different
clusters, and sample a statistically-significant number of apps

TABLE I: Our selected features

Category Feature #Original #Used

Syntax Features
(used by at least
0.1% apps)

Permissions 717 119
API Calls 1,397 852
Intent Action 845 34
Intent Category 38 4
Hardware 33 12

String Features
Source Code String 100 100
XML Code String 768 768

Total 7 types 3,898 1,889

for further investigation (the confidence level is 95% and the
confidence interval is 5%).
Feature Extraction. Following the widely-used general fea-
ture types in Android malware detection [19], [20], [14], [21],
[22], we extract the following features such as permissions and
API calls (Table I) by decompiling APKs into Smali code
via Apktool [39]. Note that, we, here, do not take the malware-
specific features (e.g., semantic, security-related, and context-
aware features) into account, whose goal is to best represent
the malicious behaviors in order to distinguish malware from
samples.
• Permissions, which are declared in the AndroidMani-

fest.xml file to indicate the necessary permission to access
specific resources.

• API calls, which are invoked by the app to interact with
the underlying Android system, such as sending SMS.

• Intent, which is regarded as the “medium” to transfer data
between different components. We consider two types of
data, i.e., action and category, as the features.

• Hardware, which is requested by the app to get access to
components such as NFC and GPS.

• Strings, which indicate values of variables. We collect
strings from two sources: declared in Smali files and
defined in strings.xml files.

Specifically, for permissions, API calls, intent, and hardware
features, we first extract them from AndroidManifest.xml files
and Smali files, and obtain the union set of them. Since
the size of the union set is too large, to avoid sparse data,
we filter out the features that are used by less than 0.1%
apps, only use the vectors of the remaining features for
clustering. We then decode the features into one-hot vector,
and set the value to “1”, indicating the corresponding feature
is requested by the app, otherwise the value is set to “0”.
For the strings extracted from the Smali files, we split
them by predefined punctuations such as “.”, “//”, and “—”,
and also camel cases for method/class/API names [40], e.g.,
“AdActivity” to “Ad” and “Activity”. To encode them with rich
semantic representations, we resort to the popular GloVe pre-
trained word vectors [41], a published repository containing
27 billion English vocabularies. For each app, we extract the
100-dimension vectors for the tokens from the Smali files
and take the average as the representation for the strings from
the source code of the app. With respect to the strings extracted
from the strings.xml file, since they are generally mingled
with multiple languages including English, Chinese, Hindi,
etc., we turn to the multilingual word embeddings released

by Google [42], and use the similar strategy as we encode
strings from Smali files. The strings.xml file of each app is
represented as 768-dimension real-value vectors.
Community Detection. Community detection algorithm has
been widely adopted in malware detection for clustering
malware into different families [43], [44]. In this paper, to
effectively determine the categories of the numerous unlabeled
apps, we follow the typical strategy [34] to preliminarily
cluster these apps, from which we sample a statistically-
significant number of apps for further manual analysis.

Specifically, we first build a bi-directional graph of the
unlabeled apps. Each app is one node in the graph, and
the edge weight between two nodes is computed based on
the similarity of the corresponding two apps. The similarity
score is determined by the cosine similarity [45] between
their feature vectors. Note that not all the unlabeled apps are
incorporated in the graph. According to Fan et al. [34], an app
is removed from the graph if it presents loose relations with
other apps (i.e., the similarity scores with all the other apps
are lower than 0.751). Such apps can be regarded as outliers
and are not the interest of this work. After this step, 21,403
out of 22,886 apps are remained for subsequent analysis.

Then we use the popular community detection algorithm,
infomap [46], to cluster the unlabeled apps in the graph.
We choose the infomap algorithm since it presents superior
performance on app clustering than other community detection
approaches in prior studies [34]. After conducting the cluster-
ing step, we obtain 594 clusters with the count distributions
of the apps shown in Fig. 2. Since we focus on identifying
whether the unlabeled apps exhibit prominent categories, we
only choose the top clusters for analysis. In this work, we
select the top 15 clusters which include 10,918/21,403 apps,
occupying 51.0% of the apps in the graph, for further analysis.
On average, each of the top cluster has 727 apps.

Finally, we sample representative apps from each cluster.
The representative score of each app is computed as the
sum weight of all the adjacent nodes in the graph, based
on the intuition that the apps presenting more similarities
with surrounding apps tend to be more representative of the
cluster [47]. We extract the top 25 apps from each cluster for
manual analysis. In total, we manually analyze 375 apps (out
of the 10,918 unlabeled apps) providing us with a confidence
level of 95% and a confidence interval of 5%.

IV. EMPIRICAL STUDY

Based on the unlabeled apps we sampled from each cluster,
we take an in-depth manual analysis on these apps from the
following aspects: 1) We summarize the taxonomy of these
unlabeled apps by manually understanding the characteristics
and common behaviors of each app; 2) We present typical
cases from the sampled unlabeled apps to illustrate the ab-
normal behaviors of apps; 3) Finally, we also summarize the
lessons learned from the study on such unlabeled apps, and
propose useful insights for follow-up research.

10.75 is determined following the prior study [34].

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40

51.0%

Cluster ID

#
Ap

ps

Fig. 2: Distribution of app numbers for the top 40 clusters.
The top 15 clusters occupy 51.0% of all the clustered apps.

To conduct the manual analysis, we use 3 real mobile
devices (i.e., Samsung Galaxy S10+, Samsung Galaxy S10,
and HUAWEI Mate 20 with Android 9.0 OS) rather than
Android emulators to ensure the real execution environment.
We also use several reverse engineering tools to help analyze
the unlabeled apps, such as Apktool [39] and jadx-GUI [48].
Apart from these tools, we use Android logcat [49] and instru-
mentation techniques to help observe the common behaviors
of apps from different clusters. Meanwhile, all manual analysis
is done under a control environment (in our research lab) to
avoid spreading the threats to real app users.

A. Taxonomy of Unlabeled Apps
To summarize the categories of unlabeled apps and their

common characteristics and behaviors, we select the top 15
clusters where each cluster provides us 25 apps for manual
analysis. Based on the observed common behaviors from
different unlabeled app clusters, the categories are summarized
as follows.
Adware [50]. Unlabeled apps in this type usually pop up ad-
vertisements or notifications on the screen that disturb mobile
users. For example, some of these apps pop up advertisements
very frequently, which largely affects the normal usage of the
apps and annoys users. Such advertisements either redirect
users to the app market or websites to attract users to down-
load apps or register on the websites, which may download
malicious apps or leak private information. In addition, when
analyzing this category, we find many redirected website links
are forbidden by mobile systems due to security threats.
Specifically, some advertisements provide a closing button, but
the button will redirect to a website via mobile browser (the
app is named Lighting). Some advertisements even have a full-
screen image covering the whole screen of the device, however
without a close or cancellation button, thus the users are forced
to click on the advertisement if they want to continue using this
app. For example, Fig. 3a shows a full-screen advertisement,
inducing users to click on the link to register by showing a
30-second video, however without showing the close button
on the top left. The close button only shows after the video is
finished. Therefore users have no choice in the first 30 seconds
but to click on the advertisement. Fig. 3b shows a frequent
advertisement at the bottom. Such advertisements negatively
affects user experience.

Fake Apps [5]. Following the definition in [5], fake apps are
apps that imitate the corresponding official ones or look almost
the same as their official correspondences, however without
official certificates. The ultimate goal of fake apps is to elicit
downloads or manifest malicious behaviors by plagiarizing the
famous official ones. For example, as shown in Fig. 4, the fake
Fruit Ninja app (i.e., Fig. 4b) mimics the similar functionalities
as the original one (i.e., Fig. 4a) to attract app users. For most
normal users, they lack rich experience to distinguish whether
the current is a fake app. Many fake apps are uploaded to
third-party markets and attract more downloads with the help
of popularity of the official apps. From our observation, we
find that such apps contain similar content and functionali-
ties compared with the corresponding original one, however
downgrade some functionalities. Meanwhile, there are dozens
of fake apps that sometimes would target one official app.
Fig. 3c shows some fake apps for an official music app, with
similar icons or app names, we can see some of them are even
with the same icon. Such fake apps negatively affect the use
of the corresponding official apps.
Redirected Downloader Apps. Unlabeled apps in this type
link to external downloads and installations of other apps or
plugins. Such downloading and installation processes can be
triggered when the app is launched, or triggered by user inter-
action, pretending as installing a necessary component provid-
ing the full functionalities, however it would also redirect to
other downloading pages to downloading other unnecessary
apps. Some apps (e.g., one app named Beta WhatsApp in
Fig. 5a) do not actually provide the claimed service, instead,
they contain a single page showing the redirect URL for users
to download the corresponding apps that provide the claimed
service. After users install the provided necessary component,
the app may not provide the claimed functionalities, either.
Moreover, sometimes the installation request dialog pops up
again and again even if the users have already install the
required plugin. Such downloading apps usually conduct the
downloading and installation process by requesting permis-
sions from users, not silently downloading in the background
like what malware do. Fig. 3d shows a redirect downloading
app named Finance Pro, when users open the app, it directly
redirects to download a necessary component in order to
provide the full functionalities.
Redirected Promotion Apps. Different from adware, redi-
rected promotion apps redirect users to external web content
outside of the app, such as following accounts on social media
(e.g., Facebook, Instagram (shown in Fig. 5b), or other sales
apps), usually by opening a web browser page. Sometimes
users are even required to actually click on the promotion links
to do some special tasks (e.g., promoting third-party apps) in
order to continue using the current app, otherwise the users
are unable to use the services provided by the app. When the
third-party apps are downloaded by users, the current app will
check whether the downloaded app is installed on the current
device to further unlock the app. Fig. 3e displays such an app,
which is a WI-FI hacker app, however in order to use the
functionality of hacking WI-FI, users are forced to click on

(a) Adware
(Full screen)

(b) Adware
(Bottom)

(c) Fake Apps (d) Redirected
Downloader

(e) Redirected
Promotion

(f) Dialing/SMS
-Managing App

(g) Data
Collection App

(h) Demo App (i) Unfinished App (j) Broken App

Fig. 3: Examples of unlabeled app categories

(a) Original (b) Fake Fruit Ninja
Fig. 4: Original and Fake Fruit Ninja app

one of the three promotions at the bottom of the page.
Dialing/SMS-Managing Apps. Dialing/SMS-Managing apps
usually request permissions related to managing phone calls
(e.g., making/receiving phone calls) or SMS (e.g., sending/re-
viewing SMS) from users, and conduct such behaviors when
users do not attempt to do so. Such app may leak user
personal information such as phone number and may also
cause unexpected financial cost (e.g., calling charge, SMS
charge). For example, Fig. 3f shows such an app named
OhYeah, there is no functionality related to making phone
calls. However it requests permissions of making phone calls,
which is not what it requires to provide the claimed services.

(a) Redirected Downloader (What-
sApp)

(b) Redirected Promotion (Insta-
gram)

Fig. 5: Examples of Redirected Downloader/Promotion apps

The behavior of SMS-Managing Apps is similar to Dialing-
Managing Apps, they ask user to set the current app as the
default app for controlling sending/reviewing SMS. Note that,
it is difficult to identify the potential malicious behaviors
within apps only by the declared permissions related to phone

calls/SMS, which is one possible reason that they are not
labeled to malicious and appear to be unlabeled apps.
Data Collection Apps. This type usually forces users to enter
personal information (e.g., age, gender, photo number, address)
or request sensitive permissions (e.g., access to location and
contacts) to get access to the app’s functionality. Sometimes
the requested data is not what is indeed required to provide
the claimed service. In addition, for Android platform, the
Privacy Policy [51] is designed for app developers to declare
what user data will be collected, why it will be collected, and
how it will be used. The declaration is also consistent with
GDPR [52]. Fig. 3g displays an app (named RLC) requesting
access to location before launching the app. In fact, RLC is
the abbreviation of “resurrected life church”, which is not
related to location information. In other words, accessing
location is not a necessary behavior to provide the normal
functionalities. However, users cannot use the app if they deny
such permission requests, which definitely dissatisfies users.
Demo Apps. This type of unlabeled apps shares a com-
mon characteristic that the quality of such unlabeled apps
is extremely low, only containing very limited functionalities
for exercise or demonstration purpose. In detail, the code
structure and Graphical User Interfaces (GUI) design are
extremely simple with only one page. Some of them are
only composed of default widgets which are automatically
generated from Android Studio. For example, Fig. 3h is an
app for demonstration or testing of some basic components,
only containing two EditTexts and a Button with a single page.
Such apps are not ready for release, which would dissatisfy
users with such simple functionalities.
Unfinished Apps. This type of apps contains unfinished
modules, i.e., some functionalities are not fully implemented,
leaving some buttons unresponsive after users click on it, or
leaving some blank contents in the pages. Fig. 3i shows an
unfinished app, which is a suggestion app with no implemen-
tation, and the image buttons (e.g., “Weekends” button, “Child
food”, and “Fast food”) are not responsive, either, thus users
cannot use the corresponding functionalities. The only way
to interact with it is to close it. Such apps fail to fulfill the
expectation of users with the functionalities that they claim to
provide, leading to bad user experience.
Broken Apps. From our observation, this type of unlabeled
apps usually employs WebView [53], a kind of view in
Android, to show web pages in the current app instead of a
standard web browser like Chrome. These web pages usually
contain important parts, if not all of the content and services
that the app is trying to offer are ready to display, the app
would fail to access these pages, making the app useless to
users. Interestingly, the URL of the web pages are usually
invalid, thus they cannot provide the corresponding service to
users. For example, Fig. 3j shows a broken app with invalid
URL, leading to a “Webpage not available” error. Obviously,
such apps are useless for users with just an error page.
Porn Apps. This type contains porn contents and frequently
pops up a dialog, attracting users to click on the links to
externally download the provided “video player”. The so-

called video player is usually an advertising app or a malicious
app collecting personal information. We find that some porn
apps share the same icon and UI design, and the app names are
also very similar, with only several different letters. Moreover,
from our observation, these apps usually request a large
number of permissions to conduct their abnormal behaviors.
Such frequent pop-up windows have a negative impact on
user experience, and pose potential security threats to users.
Moreover, the content in porn apps is a public health risk
for users, especially for the young mobile users. It is a great
demand to distinguish the porn apps for app users in practice.
Background Service Apps. unlabeled apps in this category
share a common characteristic that they keep consuming the
resource (e.g., accessing location, refreshing periodically) in
the background. Sometimes such background service cannot
be stopped by killing the background tasks, which negatively
affects user experience. We take a further investigate on the
code of such apps and demonstrate two cases in Section IV-B
to show the background behaviors.

In summary, we distill 11 categories of unlabeled apps based
on the concrete app behaviors by an in-depth manual analysis.

B. Case Studies of Unlabeled Apps
In this section, we demonstrate a number of real cases found

in the clustering results. These samples are observed with
typical behaviors representing the unlabeled app categories.
1 p u b l i c vo id mining () {
2 / / The mining p r o c e s s r u n s i n a background s e r v i c e
3 miner . g e t S e t t i n g s () . s e t J a v a S c r i p t E n a b l e d (t r u e) ;
4 / / mining . j s c o n t a i n s C o i n h i v e l i b r a r y
5 miner . l o a d D a t a (” mining . j s ” , n u l l) ;
6 }

Listing 1: Simplified code snippet of Urban Pulse live
wallpaper

1) Cases of Background Service Apps: Background service
apps refer to apps that stay running in the background for
their own purpose. One example is an app called Urban Pulse
live wallpaper, which is used to configure live wallpaper for
mobile devices. The corresponding code snippet is shown in
Listing 1. As we can see, in addition to the basic functionality,
it contains a special module using JavaScript to mine
Bitcoin [54] in the background and keeps using the CPU
resources of the mobile system. The mining behavior can
hardly be noticed by mobile users or security analysts due
to the attribute of background services. These characteristics
definitely cause serious user annoyance. Another example is an
app called Geometry Dash, which requests the WAKE LOCK
permission, which can be used to unlock the screen and show
the content of the device. Once Geometry Dash starts running
on the device, the ads will continuously pop up, even if the
user closes the ads. After investigating the decompiled source
code of the app, we find that it uses a timer to periodically
pop up its continuous advertising service in the background.
This kind of background service greatly annoys mobile users
and compromises user experience.

Fig. 6: Demo App (ListView) Fig. 7: Unfinished (Button)

2) Cases of Dialing/SMS-Managing Apps: Such apps usu-
ally make phone calls or send SMS unexpectedly without
users’ notice. An app called OhYeah, which is a shopping
app. This app requires users to first register by entering with
users’ names, emails, telephone numbers in the registration
page, then users can view and buy items. The simplified code
snippet of the registration module is shown in Listing 2. After
the user clicks the submit button, the app will first get the
phone number from the input field, and make a call to the
telephone number automatically and unexpectedly (lines 7-8
in Listing 2). Such behavior is abnormal for a shopping app.
1 txtNumber = itemView.findViewById(R.id.pf_number);
2 btn_Llamar = itemView.findViewById(R.id.btn_llamar);
3 btn_Llamar.setOnClickListener({
4 public void onClick(View view) {
5 mNumber = "tel:" + RecView.txtNumber.getText();
6 // Make phone calls unexpectedly
7 Intent llamar = new Intent(
8 "android.intent.action.CALL",Uri.parse(mNumber));
9 Vendedor.startActivity(llamar);

10 }
11 });
12 }

Listing 2: Simplified decompiled code snippet of OhYeah

3) Cases of Demo Apps: Demo apps are too simple to
provide useful services to users, usually containing code-
demos or pure texts. Although no harm will be done to app
users, such unlabeled apps are useless and should never be
published as an item on the Android markets. As shown
in Fig. 6, the app is called ListView, where there is only
one page called MainActivity that creates and displays
a ListView, without any other events attached to the list
items. Listing 3 shows the corresponding code snippet. This
app is only a basic demonstration of ListView for a beginner
in Android development, but is totally useless to users on any
Android markets.
1 public void onCreate(Bundle bundle){
2 String[] values = new String[] {"aaa", "bbb", "ccc"};
3 ArrayAdapter<String> adapter = new ArrayAdapter<

String>(this,
4 android.R.layout.list_view_item, values);
5 setListAdapter(adapter);
6 }

Listing 3: Simplified code snippet of Demo ListView

4) Cases of Unfinished Apps: Unfinished apps refer to apps
that have obvious unfinished features, misleading users to ex-
pect more functionalities than what are actually implemented.
Fig. 7 shows the UI page of an unfinished app called VATCal-
culator, which is used to compute the consumption tax people
need to pay based on the value. The simplified decompiled
code snippet of VATCaculator can be referenced by Listing 4.
This app has a text-input field for users to enter values, and

several buttons to perform calculations. Since the buttons are
clearly visible to users, the users would naturally expect these
clickable buttons to perform some calculation tasks. However,
through an in-depth investigation of the decompiled source
code of the app, we find that it does not implement the
functionality of getting the value from the text-input fields
(i.e., onTouch, TouchDown, and TouchUp), and it also
fails to finish the functionality of performing calculation after
clicking the “calculation” buttons (i.e., onTouch in the source
code). As a result, the users can only observe the buttons
changing colors after being clicked, however without any other
reactions. It is obvious that the underlying functionalities for
these buttons are not implemented, and the functionalities of
this calculator are unfinished.
1 public boolean onTouch(View view, MotionEvent me){
2 /* Only changing the button’s color, no calculation or

value extraction from the text field */
3 if (me.getAction() == 0){
4 if (ShowFeedback()){
5 view.getBackground().setAlpha(70);
6 }
7 TouchDown();
8 }else if(...){
9 ...

10 TouchUp();
11 }
12 }
13 // Only dispatching events, no calculation
14 public void TouchDown(){
15 dispatchEvent(this, "TouchDown", new Object[0]);
16 }
17 // Only dispatching events, no calculation
18 public void TouchUp(){
19 dispatchEvent(this, "TouchUp", new Object[0]);
20 }

Listing 4: Simplified code snippet of VATCaculator

5) Cases of Broken Apps: Broken apps are clustered as
a category with malfunctioning features or failures iden-
tified during the usage. For example, Jubaoyaojin is an
investment app that fails in accessing a web page (i.e.,
http://www.jubaoyinjin.com) immediately after it starts, possi-
bly due to the shut-down server or the expired domain name.
1 public class MainActivity extends BaseActivity{
2 public void initView(){
3 String json = Utils.readJsonFile("property.json");
4 url = getUrl(json);
5 // Invalid url!
6 getCurrentFragment().getBrowser().loadUrl(url);
7 }
8 }

Listing 5: Simplified code snippet of Jubaoyaojin

After analyzing the corresponding decompiled code in List-
ing 5, we can see that whenever the app starts, it immediately
posts a web request to load its official website (Line 6).
The URL is actually stored in a JSON file (Line 3), and is
preloaded into the main page when a fragment is created.
However, the requested URL is invalid due to the shut-down
server or the expired domain name. As a consequence, the
user cannot even load the first page of this app and the app
becomes useless and displays nothing but an error message.

C. Comparison with Existing Grayware Study
We first compare our identified categories of unlabeled apps

with recent research results of grayware [4]. Grayware, defined
by Andow et al. [4], represent the apps that contain annoying,
undesirable, or undisclosed behaviors that cannot be classified
as Android malware. Among our 11 identified unlabeled app
categories, we have the following findings:
• 8 new categories are discovered based on our analysis,

which are different from Android grayware studied in
[4], including Redirected Downloader Apps, Redirected
Promotion Apps, Data Collection Apps, Demo Apps,
Unfinished Apps, Broken Apps, Porn Apps, and Back-
ground Service Apps.

• 2 categories (Fake apps and Dialing/SMS-Managing
Apps) strictly subsume two known categories Impos-
tors and Dialers [4], respectively. More specifically, apps
in the category Imposters usually impersonate through
repackage techniques, however, some apps impersonate
functionalities of popular apps to attract installation and
usage from app users. Due to this characteristic, we called
this category as Fake Apps in this work. Dialing/SMS-
Managing Apps not only contains the type of Dialers
defined in [4] but also apps that have SMS behaviors.

• The remaining 1 category is completely matched (Adware)
with the one in [4].

Apart from the 11 identified categories, we find 5 categories
are unrevealed in our dataset compared with the recent re-
search results [4], including Prankware, Scareware, Rooting
Tools, Remote Access Tools, and Hijackers.

In fact, according to our empirical investigation of unlabeled
apps, it seems that almost all the unlabeled apps have “gray”
attributes instead of “malicious” attributes. They do not have
obviously malicious behaviors as malware, so it is not easy
to label them in industry and they are often easily ignored
by analysts. However, according to the comparison results,
we note that several categories of grayware are in the wild
that lead to significant negative impacts on mobile users.
The previous grayware study [4] only focused on the apps
collected from Google Play Store, in this paper, we distill more
categories and understanding of the gray area of the mobile
world, which thanks to the real dataset from industry instead
of only the official Android market.

V. LESSONS LEARNED AND DISCUSSION

A. The Boundary of Malware and Grayware
According to our study, we distill many new grayware

categories with negative attributes for users. In practice, the
boundary of Android malware and benign apps might be
blurry and subjective [15], [16], [21], it is also true for the
two types of Android apps (i.e., malware and grayware). The
definition of special types depends on specific scenarios and
intentions of the apps. For example, for fake apps, they should
be regarded as malware if they are repackaged to conduct
malicious behaviors, however if they are designed to only
receive more attention by imitating certain popular apps, they

belong to the grayware category. Also, adware often wander
between Android malware and grayware [50]. Similarly, some
individual users choose to root their own devices (i.e., gain
administrative or superuser permissions) by using third-party
apps to get more fancy functionalities, which seems to be a
normal operation. However, some analysis tools regard the
rooting app as a malicious one since it gains the administrative
permissions that can manipulate system applications (e.g.,
alter, replace) with privileges, giving highways to malware
to conduct their malicious behaviors. Therefore, the boundary
of them is unclear. In fact, manual analysis is an initial step
to understand the characteristics of the grayware apps in the
wild rather than only the official apps and further identify the
boundary more clearly, especially for the unlabeled apps that
we have analyzed in this paper.

B. Industrial Profit Chain of Unlabeled Apps
From our manual analysis, we find that some behaviors

of unlabeled apps may unveil special industrial profit chain
in the real world, which means that this study is a peep-
hole to see the back-end profit mode of the unlabeled app
ecosystem. For example, for the Adware Apps, we observe
that the advertisements in different app categories redirect to
the same URL to display the same content to maximizing
profit of advertisement providers. Similarly, for the Redirected
Promotion Apps, promotions in some apps redirect to the same
promotion product such as browsers and social apps, such
cases appear frequently in our dataset. In the future work,
we aim to understand the back-end industrial profit chain to
further help to identify the corresponding unlabeled apps, with
the help of the dataset provided by the industry, which is a
more challenging research for both academia and industry.

C. Low Quality Unlabeled Apps
Apart from the apps that are developed for making profit

and have negative impact on user experience, we also find
that some unlabeled apps are clustered by their own attributes
including Demo Apps, Unfinished Apps, and Broken Apps,
causing user dissatisfaction with extremely low quality. Such
kinds of unlabeled apps are hardly a potential threat to the
Android system or users’ personal data due to the limited
complexity or malfunction. As a result, this type of low-
quality unlabeled apps is underestimated and neglected in
previous studies [4], [55]. Apart from such apps with limited
functionalities, we also observed that a large number of apps
suffer from crashes once the apps launch. User cannot use
them at all. For the third-party Android markets, they should
strengthen supervision of app quality to avoid spreading these
low quality apps to users.

D. Propagation of Unlabeled Apps
Compared with malware, unlabeled apps can be propagated

faster, as they are less likely to be identified by anti-virus
detection systems. Before our study on unlabeled apps, there
is no research focusing on this field, let alone the classification
approaches for classifying them to each category. According

to our analysis result, none of the unlabeled apps involves
behaviors of attacking the Android system or gaining root
access (i.e., privileged permissions) of the device. In con-
trast, Android malware usually focus on data leakage and
vulnerabilities of the mobile system in order to breach system
protection and gain root access of the device and further
control it [56], [57]. Such nature of malware leads to different
detection abilities of the Android anti-virus mechanism for
malware and unlabeled apps (i.e., unlabeled apps and grayware
are less likely to be identified). Once the system patches the
vulnerability, substantial efforts are needed to find another
vulnerability in order to develop a new malicious app. On
the contrary, unlabeled apps can make profit form network-
traffic theft or advertisements. Therefore, unlabeled apps only
require relatively simpler development for a shell that carries
components such as advertisement frameworks or network-
traffic theft functionalities. As shown in Fig. 4b, a lot of
fake apps are observed in unlabeled app categories, suggesting
that only minor modification is needed for unlabeled app
developers to produce a large number of unlabeled apps.
Moreover, normal system updates do not affect unlabeled apps
as their behaviors do not depend on the patched leakages,
and unlabeled app developers can reuse most parts of the old
versions. As a result, a lot of repeated icons, UI design, and
even app names are observed in most of the unlabeled apps.

E. Feedback from Industrial Partners
According to the clustering results from both industry

and academia, we find that the community-based/clustering
techniques are not effective in characterizing unlabeled apps
in practice. In fact, before the study, our partner leveraged the
string features extracted from APK files and employed N-gram
to cluster these apps. The result showed it was able to identify
some Porn Apps, but ineffective to cluster other categories.
Although it is a great demand for our industrial partner to
use a multi-class classifier to distinguish the unlabeled apps,
the classifier is still ineffective due to the multi-behaviors
within each app. Thus, the labeled apps are especially more
important for this task. To get useful feedback about the
analysis on unlabeled apps from the industry, we had face-to-
face meetings with them to discuss the characteristics of our
analyzed results, they acknowledged our understanding and
findings on unlabeled apps, meanwhile, they mentioned that
compared to academic researchers, the industrial stakeholders
are more interested in unlabeled apps. They aim to reduce the
security risks and negative impacts as much as possible from
a business perspective based on our analysis results.
Benefits to our industry partner. 1) They are constructing
a dataset of all categories of unlabeled apps based on our
empirical investigation, and further leverage learning-based
approaches to classify these apps from others to mitigate the
potential threats. 2) It is difficult to identify all these categories
through one model in the initial stage even based on our
study due to the limited labeled dataset. With the labeled
apps based on our study, the industrial analysts have defined
and extracted special “features” for different categories in

order to achieve the goal of characterizing different types of
unlabeled apps. In fact, our partner has implemented several
“feature” definitions on their app analysis platform, Anony-
mous platform, according to our analysis results. As for Data
Collection Apps, Porn Apps, Background Service Apps, and
Fake Apps, they leveraged different defined features to identify
them with a great performance. For example, Fake apps [5]
have been analyzed and studied by them in depth under our
collaborations. They also encourage academic researchers to
pay more attention on what are the real demand of app analysis
in practice.

VI. THREATS TO VALIDITY

The incompleteness of black/white-lists. This potential threat
is from our initial data collection process. The unlabeled
Android apps are acquired from an industrial company, i.e.,
Pwnzen Infotech Inc., and they use the black-list and white-
list to filter out the known malicious and benign samples,
respectively. It is hard to guarantee that the remaining “indus-
trial unlabeled Android apps” do not contain any malicious
or benign samples. However, manual analysis with cross-
validation can eliminate such negative effect on the dataset
as much as possible.
Manual analysis. Since we apply manual analysis to catego-
rize these unlabeled apps, and investigate the characteristics of
them, there may be bias regarding the analysis results. Thus
we cross-validate the taxonomy and the characteristics across
co-authors to make the result more reliable and convincing.

VII. CONCLUSION

In this paper, we conduct the first data-driven analysis
of industrial unlabeled Android apps, leveraging the cluster
algorithm to categorize unlabeled apps at scale from industry
(i.e., data sampling), and performing an in-depth manual
analysis. We systematically study the clustered unlabeled app
categories by their common characteristics, and summarize 11
unlabeled app categories and their corresponding behaviors.
Along with the categories, we also provide a few case studies
of several categories. The other new categories can be pub-
lished as a benchmark to foster further research on grayware,
which thanks to the dataset of unlabeled apps from industry.
Finally, we highlight our discoveries based on the compari-
son with Android malware and grayware, several categories
are partial/completely match with the first Android grayware
study. Meanwhile, the industrial partners acknowledged our
understanding and findings in this paper, and keep in touch
with us for further investigation and cooperation.

ACKNOWLEDGEMENTS

We sincerely thank Zhushou Tang, affiliated to PWNZEN
InfoTech Co., LTD, for the valuable dataset of Android apps.
This work was partially supported by the National Natural
Science Foundation of China (Grant No. 62102284, 62102197,
62002084, 62072309, 61761136011), and Stable support plan
for colleges and universities in Shenzhen under project No.
GXWD20201230155427003-20200730101839009.

REFERENCES

[1] (2018) App download and usage statistics. [Online]. Available:
http://www.businessofapps.com/data/app-statistics

[2] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
rydroid: Automated generation of storyboard for Android apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 596–607.

[3] X. Jiang and Y. Zhou, “Dissecting Android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 95–109.

[4] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study of
grayware on Google Play,” in Proceedings of the 2016 IEEE Security
and Privacy Workshops (SPW). IEEE, 2016, pp. 224–233.

[5] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A
large-scale empirical study on industrial fake apps,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice. IEEE Press, 2019, pp. 183–192.

[6] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in Android apps,” in
Proceedings of the 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 408–419.

[7] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 2018, pp. 486–497.

[8] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
ACM, 2018, pp. 797–802.

[9] C. Gao, W. Zheng, Y. Deng, D. Lo, J. Zeng, M. R. Lyu, and I. King,
“Emerging app issue identification from user feedback: experience
on WeChat,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice. IEEE Press,
2019, pp. 279–288.

[10] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android banking
apps,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1310–1322.

[11] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated test input generation for Android:
Towards getting there in an industrial case,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineer-
ing in Practice Track (ICSE-SEIP), 2017, pp. 253–262.

[12] (2019) Tencent. [Online]. Available: https://www.tencent.com/en-us
[13] (2019) Qihoo 360. [Online]. Available: https://www.360totalsecurity.

com/en
[14] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and

C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in Proceedings of the 21st Annual Network
and Distributed System Security Symposium (NDSS), vol. 14, 2014, pp.
23–26.

[15] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th IEEE/ACM International Conference on
Software Engineering (ICSE), 2015, pp. 426–436.

[16] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext:
Differentiating malicious and benign mobile app behaviors using con-
text,” in Proceedings of the 37th IEEE/ACM International Conference
on Software Engineering (ICSE), pp. 303–313.

[17] Z. Xu, K. Ren, and F. Song, “Android malware family classification and
characterization using CFG and DFG,” in Proceedings of the 2019 In-
ternational Symposium on Theoretical Aspects of Software Engineering
(TASE), 2019, pp. 49–56.

[18] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Cypider: build-
ing community-based cyber-defense infrastructure for Android malware
detection,” in Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 2016, pp. 348–362.

[19] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and API calls tracing,” in
2012 Seventh Asia Joint Conference on Information Security. IEEE,
2012, pp. 62–69.

[20] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining API-level features
for robust malware detection in android,” in International conference on
security and privacy in communication systems. Springer, 2013, pp.
86–103.

[21] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting Android
malware,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security (AsiaCCS), 2016, pp. 377–388.

[22] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach,” Computers & Security, vol. 73,
pp. 326–344, 2018.

[23] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of piggybacked mobile applications,” in Proceedings of the
3rd ACM conference on Data and application security and privacy.
ACM, 2013, pp. 185–196.

[24] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for Android,” in Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices, 2011, pp. 15–26.

[25] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” in Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2014, pp. 259–269.

[26] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

[27] T. Chen, J. He, F. Song, G. Wang, Z. Wu, and J. Yan, “Android
stack machine,” in Proceedings of the 30th International Conference
on Computer Aided Verification (CAV), 2018, pp. 487–504.

[28] F. Song and T. Touili, “Model-checking for Android malware detec-
tion,” in Proceedings of the 12th Asian Symposium on Programming
Languages and Systems (APLAS), 2014, pp. 216–235.

[29] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
performance-sensitive malware detection system using deep learning
on mobile devices,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 1563–1578, 2020.

[30] R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, “Seqmobile: A
sequence based efficient Android malware detection system using rnn
on mobile devices,” arXiv preprint arXiv:2011.05218, 2020.

[31] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W.
Lin, “Mobidroid: A performance-sensitive malware detection system on
mobile platform,” in 2019 24th International Conference on Engineering
of Complex Computer Systems (ICECCS). IEEE, 2019, pp. 61–70.

[32] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and M. R. Lyu,
“Why an Android app is classified as malware: Toward malware classi-
fication interpretation,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 2, pp. 1–29, 2021.

[33] A. A. A. Samra, K. Yim, and O. A. Ghanem, “Analysis of clustering
technique in Android malware detection,” in Proceedings of the 7th
International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing. IEEE, 2013, pp. 729–733.

[34] M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, and T. Liu,
“Graph embedding based familial analysis of Android malware using
unsupervised learning,” in Proceedings of the 41st International Con-
ference on Software Engineering (ICSE), 2019, pp. 771–782.

[35] S. M. Kolekar and P. N. Mahalle, “Malware prevention and detection
system using smart phone,” International Journal of Computer Applica-
tions, vol. 107, no. 21, pp. 31–35, 2014.

[36] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, detection and analysis of malware for smart devices,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 2, pp. 961–987, 2014.

[37] L. Wei, Y. Liu, and S.-C. Cheung, “Taming Android fragmentation:
Characterizing and detecting compatibility issues for Android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM, 2016, pp. 226–237.

[38] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu, “Under-
standing and detecting fragmentation-induced compatibility issues for
Android apps,” IEEE Transactions on Software Engineering, 2018.

[39] (2019) Android Apktool. [Online]. Available: https://ibotpeaches.github.
io/Apktool

http://www.businessofapps.com/data/app-statistics
https://www.tencent.com/en-us
https://www.360totalsecurity.com/en
https://www.360totalsecurity.com/en
https://ibotpeaches.github.io/Apktool
https://ibotpeaches.github.io/Apktool

[40] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of the
40th International Conference on Software Engineering (ICSE), 2018,
pp. 933–944.

[41] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543.

[42] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), 2019, pp. 4171–4186.

[43] H. M. Kim, H. M. Song, J. W. Seo, and H. K. Kim, “Andro-simnet:
Android malware family classification using social network analysis,”
in 16th Annual Conference on Privacy, Security and Trust (PST), 2018,
pp. 1–8.

[44] Y. Du, J. Wang, and Q. Li, “An android malware detection approach
using community structures of weighted function call graphs,” IEEE
Access, vol. 5, pp. 17 478–17 486, 2017.

[45] A. Huang, “Similarity measures for text document clustering,” in Pro-
ceedings of the sixth new zealand computer science research student
conference (NZCSRSC), vol. 4, 2008, pp. 9–56.

[46] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008.

[47] C. Gao, H. Xu, J. Hu, and Y. Zhou, “Ar-tracker: Track the dynamics of

mobile apps via user review mining,” in Proceedings of the 2015 IEEE
Symposium on Service-Oriented System Engineering (SOSE), 2015, pp.
284–290.

[48] (2019) Jadx-GUI. [Online]. Available: https://github.com/skylot/jadx
[49] (2019) Logcat. [Online]. Available: https://developer.android.com/

studio/command-line/logcat
[50] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Should you

consider adware as malware in your study?” in 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 604–608.

[51] (2019) Privacy policy for Android apps. [Online]. Available: https:
//www.iubenda.com/en/help/11552-privacy-policy-for-android-apps

[52] (2019) Gdpr. [Online]. Available: https://gdpr-info.eu
[53] (2019) Android WebView. [Online]. Available: https://developer.

android.com/reference/android/webkit/WebView
[54] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[55] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,

“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the 8th symposium on usable privacy and security, 2012.

[56] A. Stamminger, C. Kruegel, G. Vigna, and E. Kirda, “Automated
spyware collection and analysis,” in Proceedings of the International
Conference on Information Security, 2009, pp. 202–217.

[57] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices, 2011, pp.
3–14.

https://github.com/skylot/jadx
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://www.iubenda.com/en/help/11552-privacy-policy-for-android-apps
https://www.iubenda.com/en/help/11552-privacy-policy-for-android-apps
https://gdpr-info.eu
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView

	Introduction
	Related Work
	Analysis of Android Malware
	Analysis of Android Grayware
	Analysis of Android Apps

	Workflow of Our Study
	Data Preprocessing
	Data Sampling

	Empirical Study
	Taxonomy of Unlabeled Apps
	Case Studies of Unlabeled Apps
	Cases of Background Service Apps
	Cases of Dialing/SMS-Managing Apps
	Cases of Demo Apps
	Cases of Unfinished Apps
	Cases of Broken Apps

	Comparison with Existing Grayware Study

	Lessons Learned and Discussion
	The Boundary of Malware and Grayware
	Industrial Profit Chain of Unlabeled Apps
	Low Quality Unlabeled Apps
	Propagation of Unlabeled Apps
	Feedback from Industrial Partners

	Threats to Validity
	Conclusion
	References

