
1

LiDetector: License Incompatibility Detection for Open

Source Software

SIHAN XU, TKLNDST, College of Cyber Science, Nankai University, China
YA GAO, TKLNDST, College of Computer Science, Nankai University, China
LINGLING FAN

∗
, TKLNDST, College of Cyber Science, Nankai University, China

ZHELI LIU, TKLNDST, College of Cyber Science, Nankai University, China
YANG LIU, Zhejiang Sci-tech University, China and Nanyang Technological University, Singapore
HUA JI, TKLNDST, College of Cyber Science, Nankai University, China

Open-source software (OSS) licenses dictate the conditions which should be followed to reuse, distribute, and
modify software. Apart from widely-used licenses such as the MIT License, developers are also allowed to
customize their own licenses (called custom license), whose descriptions are more flexible. The presence of
such various licenses imposes challenges to understand licenses and their compatibility. To avoid financial
and legal risks, it is essential to ensure license compatibility when integrating third-party packages or reusing
code accompanied with licenses. In this work, we propose LiDetector, an effective tool that extracts and
interprets OSS licenses (including both official licenses and custom licenses), and detects license incompatibility
among these licenses. Specifically, LiDetector introduces a learning-based method to automatically identify
meaningful license terms from an arbitrary license, and employs Probabilistic Context-Free Grammar (PCFG)
to infer rights and obligations for incompatibility detection. Experiments demonstrate that LiDetector
outperforms existing methods with 93.28% precision for term identification, and 91.09% accuracy for right
and obligation inference, and can effectively detect incompatibility with 10.06% FP rate and 2.56% FN rate.
Furthermore, with LiDetector, our large-scale empirical study on 1,846 projects reveals that 72.91% of the
projects are suffering from license incompatibility, including popular ones such as the MIT License and the
Apache License. We highlighted lessons learned from perspectives of different stakeholders and made all
related data and the replication package publicly available to facilitate follow-up research.

CCS Concepts: • Software and its engineering → Software libraries and repositories; Open source

model; Reusability.

Additional Key Words and Phrases: Open Source Software, License, Incompatibility Detection

ACM Reference Format:

Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji. 2022. LiDetector: License Incompatibility
Detection for Open Source Software . ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2022), 28 pages.
https://doi.org/10.1145/3518994

∗Lingling Fan is the corresponding author. Email: linglingfan@nankai.edu.cn

Authors’ addresses: Sihan Xu, xusihan@nankai.edu.cn, TKLNDST, College of Cyber Science, Nankai University, Tianjin,
China; Ya Gao, gaoya_cs@mail.nankai.edu.cn, TKLNDST, College of Computer Science, Nankai University, Tianjin, China;
Lingling Fan, linglingfan@nankai.edu.cn, TKLNDST, College of Cyber Science, Nankai University, Tianjin, China; Zheli Liu,
liuzheli@nankai.edu.cn, TKLNDST, College of Cyber Science, Nankai University, Tianjin, China; Yang Liu, yangliu@ntu.edu.
sg, Zhejiang Sci-tech University, China and Nanyang Technological University, Singapore; Hua Ji, hua.ji@nankai.edu.cn,
TKLNDST, College of Cyber Science, Nankai University, Tianjin, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1049-331X/2022/1-ART1 $15.00
https://doi.org/10.1145/3518994

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3518994
https://doi.org/10.1145/3518994


1:2 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

1 INTRODUCTION

Open source software (OSS) [40] is a type of software where source code is publicly available under
certain licenses. The licenses dictate the conditions under which OSS can be reused, distributed,
and modified legally. To facilitate software development, a common practice is to integrate OSS
code so that developers do not need to reinvent the wheel. While it brings convenience for software
development, it also induces security issues [6, 7, 68, 70] and legal risks [34, 44] such as copyright
infringement [46], caused by license incompatibility when integrating third-party components. As
previous studies [13, 27], license incompatibility occurs when there exists no such a license that
satisfies all the rights and obligations of all the integrated third-party components, e.g, “MUST
disclose source” declared by one license but “CANNOT disclose source” declared by another license
within the same project.

According to our preliminary study on 1,846 GitHub projects, 48.86% projects are suffering from
license incompatibility. Note that, in the preliminary study, due to the lack of effective tools for
incompatibility detection, we only investigate the incompatibility among some popular licenses
that can be identified by an existing tool Ninka [15].
To address this issue, there have been several studies that investigate license compatibility,

mainly focused on license identification and compatibility analysis [15, 25, 27, 28, 30, 63]. However,
there are two problems that limit the application of previous studies. First, previous works can
only investigate the compatibility between a predefined set of common licenses, and can hardly be
adapted to other licenses automatically. For instance, SPDX-VT [27] predefines a dependency graph
to tease apart the compatibility relationships specifically for 20 well-known licenses, however, other
licenses cannot be addressed by SPDX-VT. Second, the rules to detect incompatibility need to be
manually defined and specified for each license, which is a major obstacle to automatically detect
incompatibility when licenses are changed, updated, or customized by developers. Among previous
studies, only FOSS-LTE [28] can be adapted to interpret an arbitrary license. Nevertheless, it can
only detect 38 regulations in licenses, and developers need to manually analyze the compatibility
for a given project. Actually, popular licenses or official licenses in SPDX [12] often have various
versions and exceptions, apart from which, developers are also allowed to create their own licenses
(i.e., custom licenses). According to our preliminary study, 24.56% license texts are customized by
developers. Different licenses regulate different rights and obligations. As a result, it is impractical
to identify and manually define the relationships for all licenses in the community. Instead, it is
crucial to propose an effective method that automatically interprets licenses and detects license
incompatibility issues throughout all kinds of licenses including custom licenses.

To this end, in this paper, we proposed LiDetector, an automated tool for interpreting licenses
to detect license incompatibility for open source software. It first constructs a probabilistic model to
identify meaningful license terms, and then performs sentiment analysis based on grammar parsing
to infer rights and obligations from licenses. Based on the identified terms and the attitudes implied
by licenses, LiDetector can identify license incompatibility for arbitrary licenses. Comparative
experiments demonstrate the effectiveness of LiDetector, with 93.28% precision and 75.70%
recall for license term identification, 91.09% accuracy for right and obligation inference, and 169
incompatible projects identified from 200 Github projects (with 10.06% false positive rate and 2.56%
false negative rate). To further investigate license incompatibility in real-word OSS, we leverage
LiDetector to conduct an empirical study on 1,846 Github projects and find that 72.91% projects
are suffering from license incompatibility, involving some very popular licenses such as the MIT
License [57] and the Apache License [53]. In addition, Disclose Source induces the most number of
conflicts (7,186), which deserves more attention to avoid serious legal risks. Finally, lessons learned

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:3

are summarized based on our study from the perspectives of different stakeholders (e.g., developers)
to shed light on the importance of license compatibility and the usefulness of LiDetector.
In summary, we made the following novel contributions:
• We proposed LiDetector, a hybrid and effective method that automatically understands license
texts and infers rights and obligations to detect license incompatibility in open source software
with arbitrary licenses, including the widely-used ones and the custom ones.
• Extensive and comparative experiments demonstrate the effectiveness of LiDetector over exist-
ingmethods, with 10.06% false positive rate and 2.56% false negative rate in license incompatibility
detection for open source projects.
• We further conduct a large-scale empirical study on 1,846 GitHub projects by leveraging LiDe-
tector, and find that 72.91% of the projects are suffering from license incompatibility, involving
popular licenses such as the MIT and Apache License, which deserve more attention from devel-
opers and software companies. We released all the datasets [66] and the replication package [67]
on Github for the community.

2 BACKGROUND

In this section, we first introduce OSS licences and the compliance issues. Then, we present a
motivating study, which shows the importance of detecting license incompatibility for OSS.

2.1 OSS License

Licenses applied in open source software (OSS) regulate the rights, obligations, and prohibitions of
OSS use. An OSS license is represented in the form of text description, where the copyright holders
specify the conditions under which users can freely use, modify, and distribute software [38].
The Software Package Data Exchange specification (SPDX) [12, 37] maintains over 400 licenses
including very popular ones such as the Apache License, the Academic Free License (AFL), and
the GNU General Public License (GPL). When users use OSS to facilitate software development,
they are expected to comply with the rights and obligations implicated by the licenses, e.g., can use,
cannot redistribute, and refuse commercial use.
License term vs. license term entity. In this paper, a license term refers to a formal and unified
description of the conditions of software use (e.g., commercial use), while a license term entity refers
to a specific expression of a license term in real-world license texts (e.g., sell or offer for sale). As
previous studies [30], there are 23 license terms as displayed in Table 1, each of which represents a
type of action that users may do. To better understand these terms and facilitate incompatibility
detection, following by the previous studies [25, 28], we further classify the 23 terms into Rights
and Obligations, and consider the conditions of license terms. Nevertheless, there are a variety of
licenses (such as official ones and custom ones), leading the expressions of a license term to be
various, which impose challenges in identifying license terms from an arbitrary license [25, 27].
Project licenses (PL) vs. component licenses (CL). Typically, a software product may contain
a project license, usually in the form of a LICENSE file in the main directory of the software,
which states the conditions of software use. In addition, when incorporating third-party software
packages or reusing code [69], licenses that accompany each third-party package or file should also
be conformed to. In this paper, to distinguish with the project license, licenses in software other
than project licenses are called component licenses.
Declared licenses vs. referenced licenses vs. inline licenses. Licenses in OSS products are
presented mainly in three forms, i.e., declaration, reference, and text in source code. The declared
licenses dictate rights and obligations in one or more license files (e.g., LICENSE.txt). Users can
capture license information from these files directly without any external resource. The referenced

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:4 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

Table 1. License Terms and the Descriptions

Category No. Term Description

Rights

0 Distribute Distribute original or modified derivative works
1 Modify Modify the software and create derivatives
2 Commercial Use Use the software for commercial purposes
3 Relicense Add other licenses with the software
4 Hold Liable Hold the author responsible for subsequent impacts
5 Use Patent Claims Practice patent claims of contributors to the code
6 Sublicense Incorporate the work into something that has a more restrictive license

7 Statically Link The library can be compiled into the program linked at compile time rather
than runtime

8 Private Use Use or modify software freely without distributing it
9 Use Trademark Use contributors’ names, trademarks or logos
10 Place Warranty Place warranty on the software licensed

Obligations

11 Include Copyright Retain the copyright notice in all copies or substantial uses of the work.
12 Include License Include the full text of license in modified software

13 Include Notice Include that NOTICE when you distribute if the library has a NOTICE file
with attribution notes

14 Disclose Source Disclose your source code when you distribute the software and make the
source for the library available

15 State Changes State significant changes made to software

16 Include Original Distribute copies of the original software or instructions to obtain copies
with the software

17 Give Credit Give explicit credit or acknowledgement to the author with the software
18 Rename Change software name as to not misrepresent them as the original software

19 Contact Author Get permission from author or contact the author about the module you
are using

20 Include Install Instructions Include the installation information necessary to modify and reinstall
the software

21 Compensate for Damages Compensate the author for any damages cased by your work
22 Pay Above Use Threshold Pay the licensor after a certain amount of use

licenses indicate licenses referenced by direct or indirect links, where direct links refer to the license
name, version, or the website of the license, and indirect links refer to imported software packages
according to which licenses can be found. The detailed information needs to be obtained from
external sources, such as pypi [45] (the Python Package Index), SPDX [12, 37], and the hosted pages
for OSS licenses. The inline licenses refer to license text in the same file of source code, which usually
appear on the top of source code files. The inline licenses are considered as the most fine-grained
licenses, since their scope only cover the source code in the same file with license text.

2.2 License Incompatibility

License incompatibility refers to the conflicts of multiple licenses within the same projects. A license
consists of permissive and restrictive statements that specify the requirements for a derivative
work. Given a license term, rules associated with it span a range from very permissive ones to
highly restrictive ones (i.e., strong copyleft). To facilitate software development, developers often
need to integrate multiple third-party OSS within one project. For this reason, an open source
project may need to comply with more than one licenses. However, there are a variety of licenses
and exceptions that regulate different rights and obligations. Moreover, developers are also allowed
to create their own licenses (denoted by custom licenses), which are more flexible in expressions.
The combination of such a variety of licenses often carries out incompatibility issues that prevent
correct incorporation of third-party software packages.

Compatibility analysis aims to integrate software components with multiple licenses in a newly-
developed software [13]. Therefore, we define license incompatibility as follows: two licenses (𝑙1 and
𝑙2) are incompatible if there exists no such a license that can integrate 𝑙1 and 𝑙2 in a newly-defined

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:5

Custom: 950

Custom: 469

4,102

1,316

359

0 1,000 2,000 3,000 4,000 5,000

Inline

Declared

Referenced

Fig. 1. The Prevalence of Custom Licenses

software without right/obligation conflicts. For instance, if one license declares that “must contact
author for software use” and another license states “do not contact authors”, it indicates that there
exists a conflict between the two licenses upon the term “contact author” . Developers need to
address such a conflict, for instance, choosing another restrictive license to avoid legal risks.

2.3 Motivating Study

To better motivate our work on license incompatibility detection, we conduct an empirical study
on real-world open source projects to investigate the prevalence of custom licenses and the incom-
patibility issues.
The prevalence of custom licenses.We crawled 1,846 popular Python projects ordered by the
number of stars from GitHub. For each project, we extract three types of licenses (i.e., the declared,
the referenced, and the inline licenses) to investigate the prevalence of custom licenses. Specifically,
to extract the declared licenses, we conducted regular matching to identify license files, such as
the LICENSE.txt and the COPYING files. To extract the referenced licenses, we obtained license
names and versions directly from the project. In addition, for indirectly linked licenses of imported
third-party packages, inspired by LicenseFinder [43], we first extracted their names using QDox [42],
and then queried pypi [45] (the Python Package Index) by the package names to search for the
accompanied licenses. To extract the inline licenses, we extracted license text from comments in the
source code files (typically on the top of code files). For extracted license texts, we use Ninka [15],
a notable license identification tool, to identify the names and versions of well-known licenses.

As shown in Fig. 1, from 1,846 projects, we obtained 359 unique referenced licenses, 1,316 unique
declared licenses, and 4,102 unique inline licenses. In total, we found 5,777 unique licenses. Then,
we used Ninka to detect well-known licenses. It was observed that 75.44% of licenses are popular
licences that can be detected by Ninka, and 24.56% of the licenses (1,419) are customized by the
authors of software products. Note that licenses reported by Ninka may include popular and custom
exceptions that are slightly different from the original licenses. Moreover, all the custom licenses
belong to the declared and inline licenses. The rational behind is that most referenced licenses
are widely-used ones that can be found from external sources by users. Therefore, we further
investigated the portion of custom licenses in declared and inline ones, and found that 35.64% of
declared licenses and 23.16% of inline licenses are customized licenses. Compared with widely-used
licenses, custom ones are more flexible in text. For this reason, although previous works mainly
focus on a set of popular licenses, the presence of such a variety of custom licenses requires adaptive
methods that are capable of understanding the implications of an arbitrary license.
Incompatible licenses in real-world projects. To investigate the compliance issues of licenses
in open source software, we extract the declared, referenced, and inline licenses from the 1,846
projects using the aforementioned extraction method. Note that to observe the prevalence of
licence incompatibility, in this motivating study, we only focus on widely-used licenses that can

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:6 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

BSD License

For Augmented Traffic Control software
 
Copyright (c) 2014-present, Facebook, Inc. All 
rights reserved.
 
Redistribution and use in source and binary 
forms, with or without modif icat ion,  are 
permitted…

Project license

Copyright (C) 2014 Name
 
All rights reserved – Do Not Redistribute

Distribute

Component license

CAN

③

①

①

②

②

③

CANNOT

(a) Incompatibility between PL and CL in Augmented
Traffic Control [10]

Creative Commons Attribution 3.0 Unported 
(CC-BY)

This is the standard creative common license 
that gives others maximum freedom to do what 
they want with your work.  

You must give credit to the original author of 
the work, state their names and the title of the 
original work...

Component license

...
Do not email me about it or make an obvious 
acknowledgement to me via url links!
...

Give Credit

Component license

MUST

③

①

①

②

②

③

CANNOT

(b) Incompatibility between CL and CL in Faust [49]

Fig. 2. Two Running Examples

be identified by Ninka and have labels on tldrlegal [30], a platform that provides the rights and
obligations towards license terms (e.g., redistribute, modify) for well-known licenses.

With the assistance of tldrlegal, we conduct an investigation towards the incompatibility issues
in real-world OSS. The result shows that about 48.86% of the projects suffer from license incompat-
ibility issues. To avoid involving illegal issues, authors of these projects need to analyze component
licenses and address the incompatibility issues before distributing their software products.

2.4 Running Example

Fig. 2 depicts two real-world running examples of license incompatibility, where PL denotes a project
license, and CL denotes a component license. The first project is Augmented Traffic Control [10], an
open source project to simulate network traffic. It contains a license file for the whole project (i.e.,
a project license), which is an official license named BSD License [54]. Meanwhile, the project also
contains a component of atc cookbooks, where a custom license can be found. The project license
states that “Redistribution and use in source and binary forms, with or without modification, are
permitted”. However, the component license declares that “Do Not Redistribute”. It can be seen that
the two licenses convey different attitudes towards the same license term (i.e., Distribute in Table 1).
Users who comply with the project license (CAN distribute) may still violate the component license
(CANNOT distribute). For this reason, we say there exists license incompatibility between the
project and component licenses.
Fig. 2b illustrates another example from Faust [49], a Python stream processing library. The

project contains two component licences, one of which is a custom license that states “Do not
email me about it or make an obvious acknowledgement to me via url links”. Another component
license is an official license named Creative Commons Attribution 3.0 Unported [59], where the
authors declare that “You must give credit to the original author of the work”. In this project, two
component licenses convey conflict attitudes towards the same license term (i.e., CANNOT give
credit vs. MUST give credit). Since one can not develop a new license to satisfy the two component
licenses simultaneously, we say there exists license incompatibility between these component
licenses. Such license incompatibility can represent a serious threat to the legal use of OSS.

2.5 Problem Statement

In this paper, given a project, we address all types of licenses involved in the project, including the
inline, the declared, and the referenced licenses. The collected licenses usually include a project

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:7

OSS

bin
Train.py
LICENSE.txt

Requirements.txt

Referenced license

…

License 1

License 2

Declared license

License Term 
Identification

Right & Obligation 
Inference CANNOT do

MUST do

Incompatibility

Incompatibility Detection

Named Entity 
Tagging

Inline license

Official 
Licenses

Custom 
Licenses

Preprocessing

Model 
Construction

Grammar 
Parsing

Sentiment 
Analysis

Fig. 3. Overview of LiDetector

license 𝑃𝐿 and 𝑛 component licences, i.e., {𝐶𝐿1, 𝐶𝐿2, 𝐶𝐿3, ..., 𝐶𝐿𝑛}. Each license declares rights
and obligations that users should comply with. Our problem is to check whether there exists
license incompatibility (i.e., with conflict rights or obligations) among all kinds of licenses, with
consideration for (1) the differences between project licenses and component licenses, i.e., 𝑝𝑙 vs.
𝑐𝑙𝑖 and 𝑐𝑙𝑖 vs. 𝑐𝑙 𝑗 , where 𝑖 and 𝑗 represent the 𝑖𝑡ℎ and 𝑗𝑡ℎ component license, respectively; (2) the
diversity of licenses; and (3) condition constraints between license terms.

3 APPROACH

3.1 Overview

This section details our approach, LiDetector, a hybrid method that automatically understands
license texts and infers rights and obligations to detect license incompatibility in open source
software. As depicted in Fig. 3, given an open source project, we first extract three types of licenses,
i.e., the referenced, the inline, and the declared licenses, for further incompatibility analysis. After
obtaining the set of licenses, the main components of LiDetector include: (1) Preprocessing,
which filters out official licenses and feeds custom ones into the probabilistic model for automatic
understandings of license texts; (2) License term identification, which aims to identify the license
terms (as displayed in Table 1) relevant to rights and obligations; (3) Right and obligation inference,
which infers the stated condition of software use defined by license terms; (4) Incompatibility
detection, which automatically analyzes incompatibility between multiple licenses within one
project based on the regulations inferred from each license. We detail each phase as follows.

3.2 Preprocessing

Given a project, after obtaining all the license texts, we filter out official licenses whose rights
and obligations have already been known, and feed the other licenses such as newly-defined
official licenses and custom licenses into the probabilistic model for automatic understanding of
license texts. Here, official licenses denote licenses from the Software Package Data Exchange
(SPDX) [12]. To filter out official licenses, we note that only license texts that exactly match the
listed official licenses are marked as official licenses. For license texts that contain or reference
an official license, we extract the official license and then feed the rest texts into the machine
learning model to infer additional rules. Then, given license texts, we remove non-textual parts,
check spellings, perform stemming and morphological to obtain the roots of tokens. We utilize the
Natural Language Toolkit [39] to preprocess license texts.

3.3 License Term Identification

In this section, we elaborate the method to identify license terms related to rights and obligations.

3.3.1 Named Entity Tagging. Since license texts are typically long and complicated, it is not
easy to directly interpret license texts. For each license, LiDetector first identifies named entities

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:8 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

to use , sublicense and distribute… the original code …

… O B-8 O B-6 O B-0 I-0 I-0 I-0 …

provided that each copy… contains the copyright …

… O O B-4 I-4 I-4 I-4 I-4 I-4 …

notice
Fig. 4. Illustration of the BIO Labelling Mode for Licenses

of license terms which state the conditions of software use. In this paper, a named entity refers to a
specific expression of a license term shown in Table 1, which can be a word, a phrase, or a sentence.
Inspired by Named Entity Recognition (NER) [11, 21, 22] in natural language processing, this paper
utilizes sequence labeling to identify and localize license term entities. Before sequence labeling,
LiDetector first splits each license text into sentences by Stanford CoreNLP [20], an integrated
framework for natural language processing. After that, we employ the BIO (Begin, Inside, and
Outside) mode [47] to label each token in a sentence. As illustrated in Fig. 4, B-X implies that the
current token is at the beginning of a named entity of the 𝑋 𝑡ℎ license term in Table 1. For instance,
B-0 in Fig. 4 implies that distribute is the beginning token of a named entity whose license term is
the first one in Table 1. Similarly, I-X implies that the current token is inside a named entity of
the 𝑋 𝑡ℎ license term, and O represents a token outside name entities. In the training phase, we
manually tag each sentence by the BIO mode, and obtain a training dataset for sequence labelling
of license sentences. In the inference phase, LiDetector automatically predicts the labels of tokens
in license texts, so as to identify and localize license term entities.

3.3.2 Model Construction. Based on the tagged dataset, we train a probabilistic model to predict
the label of each token in a license text. As illustrated in Fig. 5, the model consists of three parts:
word embedding, sentence representation, and probability calibration. (1)Word embedding. To serve
as the input of the model, we first embed words in license sentences into vectors. Since licenses
are expressed by natural language, we exploit prior knowledge on word semantics and employ
the pre-trained Glove model [48] for word embedding. (2) Sentence representation. To represent
each sentence in the license text, we feed the results of word embeddings into a bi-Directional
Long Short-Term Memory (bi-LSTM) [64] model, and learn the representation of each license
sentence. (3) Probability calibration. Given a token and its context vector learned by bi-LSTM, the
model then calibrates its probability distribution over each category (label) by Conditional Random
Fields (CRF) [3], so that the contextual information represented by the hidden layer state can be
utilized to make a global decision. To reduce the labelling effort and enhance performance, we
implement the probabilistic model by semi-supervised training. Specifically, after training with
labelled samples, we used the trained model to predict license terms for unlabeled samples. Then,
all samples, including labelled samples and other samples with pseudo labels, were collected to train
the model. The rationale behind is that pseudo labelling of unlabelled samples are also predictive.
Finally, the output of the probabilistic model is a sequence of labels from where license term entities
can be directly inferred.
For instance, given the first running example in Section 2.4, the label sequence of the sentence

“Redistribution and use in source and binary forms, with or without modification, are permitted”
predicted by the probabilistic model is {B-0, I-0, I-0, I-0, I-0, I-0, I-0, I-0, O, O, O, O, O, O}. By this
means, LiDetector can localize the license term entity “redistribution and use in source and binary
forms”, and identify the license term “Distribute” from the sentence.

3.4 Right and Obligation Inference

After localizing license terms from texts, LiDetector infers the attitudes of originators towards
these license terms (e.g., grant/reserve certain rights), which are the rights and obligations stated
by the license. LiDetector achieves this goal by three steps. First, it parses sentences where
license terms are localized. Then, based on the grammar parsing, it identifies tokens which convey

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:9

... distribute the original codeLicense Input ...

Glove

BiLSTM

...CRF B-0 I-0 I-0 I-0 ...

Fig. 5. The Probabilistic Model

permissive or restrictive attitudes towards license terms. Finally, it infers the relationships between
identified license terms, since some license terms can be the conditions of other terms.

3.4.1 Grammar Parsing. To infer the conveyed attitudes towards identified license terms, we
first conduct grammatical analysis on the sentences where term entities are localized. Since license
texts are expressed by natural language under universe grammar rules, we exploited the pretrained
Probabilistic Context-Free Grammar (PCFG) model [50] from Standford CoreNLP [20] to assign a
probability to each grammar rule. By this means, a syntax tree can be obtained by selecting the tree
with the highest probability scores. Fig. 6 displays an example of grammar parsing on the sentence
“You can not refuse such a promise that significant changes must be declared” from CC-BY-SA-4.0 [55].
In this case, “significant changes must be declared” is an identified term entity, which refers to a
license term “State Changes” (No.15 in Table 1). In Fig. 6, non-terminal nodes such as NP and VB
represent the part-of-speech tags [35], and a leaf node such as refuse and changes represents a token
in the license sentence. Table 2 shows the part-of-speech tags associated with their descriptions. By
traversing the grammar tree, we can obtain the full path of each leaf node, which is the grammatical
sequence of the token in the parsed sentence. For example, from Fig. 6 we can acquire the path
from the ROOT node to the leaf node refuse as 𝑅𝑂𝑂𝑇 → 𝑆 → 𝑉𝑃 → 𝑉𝑃 → 𝑉𝐵 → refuse. It
indicates that refuse is a verb in the verb phrase “refuse such a promise that significant changes
must be declared” (denoted by 𝑉1), which is dominated by can and not, two tokens in a larger verb
phase that contains 𝑉1. Taking Fig. 2a as an example, it can be inferred that the license term entity
“redistribution and use in source and binary forms” is a noun phrase (NP) in the sentence, and the
attitude towards this license term is affected by the verb phrase (VP) “are permitted”.

3.4.2 Sentiment Analysis. Based on the results of license term identification and grammar
parsing, we perform sentiment analysis to infer the attitudes towards these terms. Generally, the
attitudes towards license terms can be categorized into three types, i.e., MUST, CANNOT, and
CAN. Given a target sentence 𝑙 and a license term 𝑘 identified from the sentence, LiDetector
infers the attitude towards 𝑘 via sentiment analysis. When the attitudes towards all identified
terms are inferred, LiDetector obtains a summary of rights and obligations of the whole license,
i.e., 𝑇 (𝑙) = [𝑡0, 𝑡1, ..., 𝑡22], where 𝑡𝑖 represents the attitude towards the 𝑖𝑡ℎ term in Table 1, 𝑡𝑖 ∈
{CAN, CANNOT, MUST, UNKNOWN}, and 0 ≤ 𝑖 ≤ 22. Note that absent license terms are marked
with UNKNOWN. Specifically, we first define a set of parts of speech that may convey permissive
or restrictive attitudes of authors, i.e., Verb (VB, VBD, VBG, VBN, VBP, VBZ) and Others (MD,
IN, RB, RBR, RBS). Tokens with these parts of speech are regarded as powerful tokens (PTs). For
instance, the token you in Fig. 6 is not a powerful token since its part of speech is RPR, which is
supposed to have no influence on the attitudes. After obtaining all PTs, we further divide them into
two groups according to their relationships with the target entity.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:10 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

you can not

refuse

such

that

a promise

PDT DT NN

NPVB

WDT

WHNP

SBAR

VPMD RB

VP

PRP

NP

ROOT

S

NP
VP

S

NNS

changes

JJ

significant

MD

must

be
VBN

VPVB

VP

declared

Entity: significant changes must be declared
License term: State Changes (No.11)
External PTs: can, not, refuse 
Internal PTs: must, be, declared

Fig. 6. The Parsing Result of a Simplified Sentence in CC-BY-SA-4.0 [55]

• Internal PTs: An internal PT represents a token contained in the target entity. Typically, internal
PTs directly declare the rights and obligations towards the target license term. For example, in
Fig. 6, the tokens must, be, and declared are three internal PTs of the entity significant changes
made to software must be declared within the copies.
• External PTs: As a part of a sentence, the sentiment analysis towards the attitudes needs to
consider external PTs which are outside the target entity but have a dominant influence on the
attitude towards the target entity. For example, in Fig. 6, tokens such as can, not, and refuse are
three external PTs that dominates the attitude of the entire sentence.

Table 2. Partial List of the Part-of-speech Tags and Description, more Tags are Described in [35]

Tag Description Tag Description

ROOT Text to process VP Verb phrase
S Simple declarative clause SBAR Clause by a subordinating conjunction
NP Noun phrase WHNP Wh-noun Phrase
VB Verb, base form MD Modal
VBD Verb, past tense IN Preposition or subordinating conjunction
VBG Verb, gerund or present participle RB Adverb
VBP Verb, non-3rd person singular present RBR Adverb, comparative
VBZ Verb, 3rd person singular present RBS Adverb, superlative
VBN Verb, past participle PRP Personal pronoun
PDT Predeterminer NN Noun, singular or mass
DT Determiner NNS Noun, plural
JJ Adjective WDT Wh-determiner

Given a license term entity, we first collect its internal PTs that directly declare the rights and
obligations. Then, based on the parsing results, we search for the external PTs that may dominate
the attitudes towards the target entity. By this means, we can acquire a set of PTs that are further
used to infer the rights and obligations implied by licenses. Since the expressions of attitudes are
not as flexible as those of license terms, we define a set of words and phrases in Table 3 as the
expressions of each attitude. Finally, for each PT, we apply a heuristic strategy to infer the attitudes.
Specifically, we mark a PT with CANNOT or MUST if it belongs to the corresponding expressions
listed in Table 3; otherwise, we mark it with CAN. Double CANNOT is offset.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:11

Table 3. Expressions of Attitudes

Attitude Expression

CAN —

CANNOT not, without, notwithstand, refuse, disallow, decline, against,
delete, nor, void, neither, prohibit, remove, don’t, no, nothing

MUST must, should, as long as, so long as, shall,
provided that, ensure that,ask that, have to

We note that for right-related terms, as previous studies [8], the absence of them are marked
with CANNOT since no rights are explicitly granted in the license; while for obligation-related
terms, the absence of them are marked with CAN. In this way, we can infer the attitude towards
each license term. For example, in Fig. 2a, there are no internal PTs in the license term entity
“redistribution and use in source and binary forms”, and the external PTs are {“are”, “permitted” }.
According to Table 3, LiDetector infers the attitude towards the license term “Distribute” as CAN,
and thus the right conveyed by the project license is “CAN Distribute”.

3.4.3 Condition Relationship. After identifying license terms and the attitudes towards them,
rights and obligations related to each term can be inferred (e.g., CANNOT Redistribute). Although
we treat each license term independently in the previous steps, license terms can also be the
conditions of other terms. For instance, “you can modify if you state changes”. In this case, there are
two license terms (i.e., “Modify” and “State Changes”), and the right (i.e., “Modify”) is only granted
under certain constraint (i.e., “State Changes”). To address this issue, we analyze the condition
relationships between license terms. Specifically, based on the parsing results, we identify the
conditional clauses that state the conditions of software use. License terms in the conditional
clauses are the conditions of terms in the main clause. Finally, we separately assume the condition
is satisfied or not, and update the attitudes of license terms in both conditional and main clause.
We describe incompatibility analysis when faced with conditions in Section 3.5.

3.5 Incompatibility Detection

As previous studies [13, 27], we define license compatibility as the ability to combine multiple
licenses into the same software product. Some incompatible examples are aforementioned in the
running examples. Based on the rights and obligations implied by each license, it is still challenging
to accurately detect license incompatibility due to: (1) project licenses (PL) should be more restrictive
than component licenses (CL), i.e., PL and CL should be treated differently. (2) Some rights or
obligations are only granted under certain conditions.

To address the first challenge, given a target project, LiDetector discriminates between project
and component licenses, and define license compatibility rules as follows:
• Rule 1: Compatibility between component licenses. Two component licenses 𝐶𝐿1 and 𝐶𝐿2
are compatible if it is possible to develop a new license 𝐿 that anyone who conforms to license 𝐿
will not violate license 𝐶𝐿1 and 𝐶𝐿2.
• Rule 2: Compatibility between a project license and a component license. A project
license 𝑃𝐿 is “one-way compatible" with a component license 𝐶𝐿, if anyone who conforms to
license 𝑃𝐿 will not violate license 𝐶𝐿.

Based on the definitions, for each pair of licenses, we compare their attitudes towards the same
license term one by one. As illustrated in Table 4, a project license 𝑃𝐿 is “one-way-compatible"
with a component license 𝐶𝐿, if 𝑃𝐿 is the same or more restrictive than 𝐶𝐿. For instance, MUST
and CANNOT are stricter than CAN, so that anyone who conforms to MUST or CANNOT will not

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:12 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

Algorithm 1: License Incompatibility Detection
Input: : 𝑙1 < 𝑡1, 𝑎𝑡𝑡𝑖𝑡1 > and 𝑙2 < 𝑡2, 𝑎𝑡𝑡𝑖𝑡2 >: A pair of licenses with extracted terms and attitudes
Output: 𝐼𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 or𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒

1 if 𝑙1 .ℎ𝑎𝑠𝐶𝑜𝑛𝑑𝑖 () ∨ 𝑙2 .ℎ𝑎𝑠𝐶𝑜𝑛𝑑𝑖 () then
// if 𝑙1 or 𝑙2 has conditions, check compatibility when the conditions are satisfied or not.

2 𝑅 = condiCheck(𝑙1, 𝑙2)
3 foreach (𝑟1, 𝑟2) ∈ 𝑅 do

4 if (𝑙1 .𝑖𝑠𝐶𝐿 ∧ 𝑙2 .𝑖𝑠𝐶𝐿) ∧ ¬ (𝑟1 ∨ 𝑟2) then
// when 𝑙1 and 𝑙2 are both component licenses, under both conditions the licenses are incompatible.

5 return 𝐼𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒

6 if (𝑙1 .𝑖𝑠𝐶𝐿 ∧ 𝑙2 .𝑖𝑠𝑃𝐿) ∧ ¬ (𝑟1 ∧ 𝑟2) then
// when 𝑙1 is a component license and 𝑙2 is a project license, at least under one condition the licenses are

incompatible.

7 return 𝐼𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒

8 return𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒

9 else

10 if ¬checkIncomp (𝑙1, 𝑙2) then
// For terms without conditions, use Rule1&Rule2 to check compatibility for each term.

11 return 𝐼𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒

12 else

13 return𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒

14 Function condiCheck(𝑙1, 𝑙2):
15 𝑅 < 𝑟1, 𝑟2 >← ∅ // Incompatibility detection result pairs when considering the path conditions

16 T ← 𝑡𝑐𝑜𝑛𝑑𝑖 (𝑙1, 𝑙2) // Terms with conditions

17 foreach 𝑡𝑒𝑟𝑚 ∈ T do

// Assume the condition is True, update the attitudes of the related terms, and detect incompatibility.

18 𝑐𝑜𝑛𝑑𝑖 ← 𝑇𝑅𝑈𝐸

19 𝐿 < 𝑙
′
1, 𝑙
′
2 >← UpdateAtti(𝑡𝑒𝑟𝑚, 𝑙1, 𝑙2, 𝑐𝑜𝑛𝑑𝑖)

20 𝑟𝑡𝑟𝑢𝑒 ← checkIncomp (𝑙 ′1, 𝑙
′
2)

// Assume the condition is False

21 𝑐𝑜𝑛𝑑𝑖 ← 𝐹𝐴𝐿𝑆𝐸

22 𝐿 < 𝑙
′
1, 𝑙
′
2 >← UpdateAtti(𝑡𝑒𝑟𝑚, 𝑙1, 𝑙2, 𝑐𝑜𝑛𝑑𝑖)

23 𝑟 𝑓 𝑎𝑙𝑠𝑒 ← checkIncomp (𝑙 ′1, 𝑙
′
2)

24 𝑅 ← 𝑅
⋃

< 𝑟𝑡𝑟𝑢𝑒 , 𝑟 𝑓 𝑎𝑙𝑠𝑒 >

25 return 𝑅

violate CAN. For a pair of𝐶𝐿𝑠 , as shown in Table 5, they are compatible with each other only when
they can be incorporated into the same software product, so only CANNOT and MUST towards
the same license term (e.g., distribute) are regarded as incompatible attitudes in this case. Finally,
we note that as declared by choosealicense [8], the absence of a license implies that nobody can
copy, distribute, or modify the work. Therefore, if a project is without a PL, we consider all rights
are reserved, so the PL is the most restrictive license that are compatible with any CL in the same
project. In this case, we only check compatibility among CLs. Similarly, if a license term is not
mentioned in the license, all right-related terms are set to CANNOT, and all obligation-related
terms are set to CAN by default. For instance, if the license text does not mention anything about
redistribution, then it means nobody can redistribute the work.
For example, in Fig. 2a, LiDetector infers that the project license declares “CAN Distribute”,

while the component license declares “CANNOT Distribute”. Since the project license is more

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:13

Table 4. Compatibility between PL and CL

PL

CL

CAN CANNOT MUST

CAN ✓ ✗ ✗
CANNOT ✓ ✓ ✗
MUST ✓ ✗ ✓

Table 5. Compatibility between CL1 and CL2

CL1

CL2
CAN CANNOT MUST

CAN ✓ ✓ ✓
CANNOT ✓ ✓ ✗
MUST ✓ ✗ ✓

permissive than the component license upon the same license term, LiDetector detects incompat-
ibility between two licenses. For the second example in Fig. 2b, LiDetector infers that the first
component license conveys “CANNOT give credit”, while the second component license states
“MUST give credit”. Since it is impossible to comply with both of them simultaneously, LiDetector
infers there exists incompatibility between two component licenses.

To address the second challenge, we consider both conditional cases separately when handling
terms with conditions, i.e., separately assume the condition is True or False to detect potential
incompatibility issues. In this way, we can eliminate the effect of conditions, and employ the above
incompatibility checking rules for both cases individually.

Algorithm 1 details the detection process. Specifically, it takes as input a pair of licenses within a
projects (𝑙1, 𝑙2), with extracted terms (𝑡1, 𝑡2) and the associated attitudes (𝑎𝑡𝑡𝑖𝑡1, 𝑎𝑡𝑡𝑖𝑡2), and outputs
whether there exist license incompatibility issues. For 𝑙1 and 𝑙2, if at least one of them has terms with
conditions, the method condiCheck() is invoked to obtain the results under both conditional cases
(Lines 1-2 and Lines 14-25), otherwise, we directly invoke the checkIncomp() method to detect
incompatibility (Lines 10-13). Here, the checkIncomp()method detects incompatibility using Rule1
and Rule2 described above. As for the condiCheck(), we initialize a list 𝑅 < 𝑟1, 𝑟2 > to store all the
result pairs of both conditional cases, and extract all the terms T with conditions (Lines 15-16). For
each 𝑡𝑒𝑟𝑚 in T , we first assume the condition is 𝑇𝑟𝑢𝑒 , update the attitudes of the corresponding
terms, and check the incompatibility (result stored in 𝑟𝑡𝑟𝑢𝑒 ) (Lines 18-20); then we assume the
condition is 𝐹𝑎𝑙𝑠𝑒 , update the attitudes of the related terms again, check incompatibility in this
case, and the checking result is stored in 𝑟 𝑓 𝑎𝑙𝑠𝑒 (Lines 18-20). For instance, given a conditional term
“CAN modify if you state changes”, we split it into two cases: (1) MUST state changes & CAN modify
(2) CANNOT modify. Then, we separately check license incompatibility for both cases and obtain
the detection results < 𝑟𝑡𝑟𝑢𝑒 , 𝑟 𝑓 𝑎𝑙𝑠𝑒 > for both cases. Finally, the results of both cases are stored in 𝑅
and returned (Lines 24-25). For each result pair in 𝑅, we treat PL and CL differently. Specifically,
if 𝑙1 and 𝑙2 are both CL, according to Rule 1, they are regarded as 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 only when both
results show incompatibility (Lines 4-5). If 𝑙1 or 𝑙2 is a PL, according to Rule 2, they are regarded as
𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 if there exists at least one case showing incompatible (Lines 6-7).

4 EVALUATION

In this section, we present the evaluation results of LiDetector to show that it can efficiently detect
license incompatibility for open source software. Specifically, we first present the performance of
LiDetector in two phases (license term identification and attitude inference), and then demonstrate
the effectiveness of LiDetector to detect incompatibility compared with the state-of-the-art tools.

4.1 Preparation

4.1.1 Data Preparation. The evaluation was conducted in three phases (i.e., license term iden-
tification, right and obligation inference, and the overall incompatibility detection). In the first
two phases, LiDetector performed tagging, training, and testing in sentences. Specifically, we
collected the license sentences from two sources: (1) tldrlegal [30], a platform where licenses can
be uploaded, summarized, and managed by users. We collected license sentences accompanied
with license term tags (i.e., CAN, CANNOT, and MUST), and obtained 11,973 labeled sentences
from 212 labelled licenses on tldrlegal. (2) Github. We crawled 1,846 popular projects with more

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:14 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

0 100 200 300 400 500 600 700
Size of the unlabeled dataset

60

70

80

90

76.95

85.88

69.7

F1 score (%) Precision (%) Recall (%)

Fig. 7. Unlabeled Data Size Determination for Semi-supervised Training of LiDetector

than 1,000 stars and extracted licenses from them. Then, we filtered out duplicated licenses and
finally obtained 48,275 sentences from GitHub. Then, we randomly selected 9,871 sentences (i.e.,
20%) to carefully label, and the remaining 38,404 sentences from 754 unlabelled licenses were fed
into the semi-supervised learning to enhance the performance of identifying license terms. In
total, we obtained 21,844 labeled sentences (i.e., 11,973 from tldrlegal and 9,871 from Github). We
randomly split these samples into the training and testing datasets by 4:1, and further split the
training dataset for training and validation by 4:1. Therefore, in the first two phases, the training,
validation, and testing dataset consists of 13,980, 3,495, and 4,369 license sentences. Three authors
cross-validated the labels and a lawyer from Yingke Law Firm1 was involved in the validation. All
the techniques and tools were evaluated on the same testing dataset. We have made the dataset
publicly available [66].

4.1.2 Parameter Settings for Semi-Supervised Learning. To save the manual efforts of la-
belling licenses, we employ a semi-supervised learning method to identify license terms, so that
both labelled and unlabelled licenses can be utilized to train the probabilistic model. The rationale
behind is that pseudo labels predicted by the model are also predictive and may benefit the model
performance when involved in training. Before evaluating the performance of LiDetector, we
first investigate how the number of unlabelled samples influences the performance of LiDetector.
Specifically, we randomly select a set of numbers of licenses (i.e., 100, 200, 300, 400, 500, 600, 700)
from the 754 unlabelled licenses, extract the sentences, and add them into the training dataset
respectively. We use three metrics to evaluate the performance of LiDetector, i.e., precision
(𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ), recall (𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 ), and F1 score (𝐹1 = 2∗𝑃∗𝑅

𝑃+𝑅 ). To avoid bias, for each parameter, we
randomly select the same number of unlabelled licenses for three times, and average the results.
Fig. 7 shows the performances of LiDetector accompanied with different sizes of unlabelled
licenses. It can be observed that the performance of LiDetector peaked when 300 unlabeled
licenses were added for semi-supervised training. In the Fig. 7, it can be observed that when more
unlabeled data were involved in the semi-supervised training, the performance of LiDetector
first increased and reached a peak when the size of unlabeled data is 300. It is consistent with
the hypothesis that pseudo labels are predicted for the unlabeled data. However, when the size of
unlabeled data is larger than 300, the performance of LiDetector decreased. A possible reason
could be that pseudo labels might introduce some noisy data, which prohibited the enhancement
of model performance. Therefore, to achieve the best performance, we decide to add 300 unlabeled
licenses (i.e., 15,312 sentences) into the training dataset for our semi-supervised learning phase in
1www.yingkeinternational.com

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:15

77.55
87.47

62.07

88.06
93.28

40.06

66.95
72.64 73.36 75.7

52.83

75.85
66.94

80.04 83.58

0
10
20
30
40
50
60
70
80
90

100

Regular Matching Sementic Similarity FOSS-LTE LiDetector- LiDetector

Precision (%) Recall (%) F1 Score (%)

Fig. 8. Comparison on Term Identification

LiDetector in the following experiments. All experiments were conducted on a machine with
Intel (R) Core (TM) i5-7200U CPU @ 2.70 GHz and 4.00 GB RAM.

4.2 Evaluation on License Term Identification

4.2.1 Setup. To evaluate the ability of LiDetector to identify license terms, we compare it
with FOSS-LTE [28], a state-of-the-art tool that extracts license terms from texts, and two natural
language processing (NLP) techniques, i.e., regular matching [3] and semantic similarity [31].
Moreover, to study the influence of unlabelled training samples, we also conduct an ablation study,
where LiDetector trained without unlabeled training samples is denoted by LiDetector−. To
conduct a fair comparison, we carefully implement the following NLP techniques and adapt them
for license term identification. Specifically,
• Regular Matching [3], which predefines a set of keyword patterns to guide license term identifi-
cation. To implement this strategy, we manually analyzed license texts to find as more expressions
of license terms as possible. Finally, 72 patterns were found for 23 license terms, as listed on our
website [66]. We then use CoreNLP [20] to split licenses into sentences and search for predefined
expressions of license terms by regular matching.
• Semantic Similarity [29], which utilizes doc2vec [31] to represent text as a vector and searchs
for similar expressions of license terms. To adapt thismethod, we trained the doc2vecmodel on the
aforementioned 754 unlabeled licenses (i.e., 38,404 sentences), so as to learn the representations
of license sentences. After that, we manually analyzed license sentences and collected a set of
representative sentences for each license term. In total, we collected 51 representative sentences
for 23 license terms, as listed on our website [66]. Finally, given a license sentence, we use the
trained doc2vec model to predict its representation. Sentences with similar representations are
considered to convey similar regulations about software use.
We conduct the comparative studies on the ground-truth dataset described in Section 4.1 (i.e., 400

labelled licenses with 21,844 labeled sentences). We randomly split these samples into the training
and testing datasets by 4:1, and further split the training dataset for training and validation by 4:1.
All the techniques and tools are evaluated on the same testing dataset.

4.2.2 Results. Fig. 8 reports the results of each method. It can be seen that LiDetector out-
performs the other methods, achieving 83.58% F1-score, followed by LiDetector− (80.04%) and
semantic similarity (75.85%). Among five methods, regular matching has the worst performance
with 52.83% F1 score. The reason could be that predefined patterns limit the flexibility of expressions,
leading to a low recall. Compared with recall, the precision of regular matching is relatively high
due to the strict matching strategy. It can also be seen that semantic similarity outperforms regular
matching and FOSS-LTE. The results indicate that semantics of license sentences can be learned by

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:16 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

the doc2vec model, so that sentences with similar representations contain similar license terms.
Moreover, we can also observe that the precision of FOSS-LTE is the lowest among all five methods.
A possible reason could be that as a topic model, FOSS-LTE may be affected by noisy data during
unsupervised learning.
Compared with FOSS-LTE, regular matching, and semantic similarity, both LiDetector and

LiDetector− have higher precision, i.e., 93.28% and 88.06%, respectively. The reasons behind are
two folds: (1) the proposed method filters out license sentences which are irrelevant to license
terms by preprocessing and clustering; (2) we employ a semi-supervised learning method that
trains a sequential model on labelled sequences, which may lead to higher precision compared
with unsupervised learning methods such as topic model in FOSS-LTE. From the ablation study,
it can be seen from Fig. 8 that LiDetector (semi-supervised learning with unlabelled samples)
outperforms LiDetector− (supervised learning without unlabelled samples) for both precision
and recall. The results indicate that pseudo labelling of unlabelled samples are predictive, and it is
worthy of incorporating these unlabelled samples for training.

However, there are also corner cases that LiDetector fails to identify license terms. For example,
in the project Statsite [61], the license sentence “You may add your own copyright statement to your
modifications and may provide additional or different license terms and conditions for use ....” actually
grant rights to Relicense (No.3 in Table 1). However, LiDetector failed to identify this term due to
the rareness of such expressions in the training dataset.

4.3 Evaluation on Right and Obligation Inference

4.3.1 Setup. After identifying license terms, LiDetector aims to infer the attitudes towards these
terms from license texts. To conduct a comprehensive study, in addition to FOSS-LTE [28], we
also compare LiDetector with two NLP techniques, i.e., regular matching [52] and SST-based
sentiment analysis [51]. Again, these NLP techniques were implemented and adapted to the context
of licenses, so as to infer rights and obligations.
• Regular matching [52], which predefines a set of keywords to infer the attitudes implied by
license sentences. To conduct a fair comparison, we use the same set of keywords (as listed in
Table 3) for the baseline and LiDetector. Specifically, the baseline searches for the keywords
that represent attitudes in the order of CANNOT, MUST, and CAN, which denote the prohibition,
obligation, and right of a software product, respectively.
• SST-based sentiment analysis [51], which learns a classifier that predicts the positive or
negative attitudes from the Stanford Sentiment Treebank (SST). Since licenses are written in
natural language, we train a LSTM model based on the SST sentiment dataset, so as to predict
the attitudes of authors behind licenses.
To investigate the effectiveness of LiDetector, we conduct a comparative study on the ground-

truth dataset (i.e., 400 labelled licenses with 21,844 sentences), and randomly split the dataset into
training, validation, and testing datasets as described in Section 4.2. All the methods are evaluated
on the same testing dataset. Moreover, to conduct a fair comparison, we evaluate the effectiveness of
these methods on the same set of license terms, which has been correctly identified in the previous
phase. For this reason, here we only compare the accuracy of these methods, since there are no
false negatives in the evaluation and the recall cannot be calculated.

4.3.2 Results. Table 6 shows the results on right and obligation inference. It can be observed
that LiDetector outperforms the other methods in attitude inference, achieving 91.09% accuracy.
SST-based sentiment analysis achieves a comparable performance with FOSS-LTE and regular
matching, with the accuracy around 82%. Note that we utilize a model that has been well trained
over the SST sentiment dataset. However, the results reported in Table 6 indicate that although

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:17

Table 6. Comparison on Right and Obligation Inference

Method Accuracy (%)

Regular Matching 81.27
SST-based Sentiment Analysis 82.88

FOSS-LTE 82.71
LiDetector 91.09

Table 7. Evaluation Results for License Comprehension

Term Extraction R. and O. Inference P (%) R (%) F1 (%)

Regular Matching Regular Matching 61.44 31.74 41.86
Semantic Similarity Regular Matching 70.94 54.30 61.51
Sequence Labelling Regular Matching 78.04 63.33 69.92
Regular Matching Sentiment Analysis 68.81 37.12 48.22

FOSS-LTE FOSS-LTE 51.34 60.08 55.37
LiDetector− LiDetector 80.23 66.75 72.87
LiDetector

(Sequence Labelling)
LiDetector

(Sentiment Analysis) 85.88 69.70 76.95

R.: Right; O.: Obligation; P: Precision; R: Recall; F1: F1 score.

license texts are written in natural language, methods of sentiment analysis cannot be directly
applied to infer the stated conditions of software use.
By analyzing the results of FOSS-LTE, we found that FOSS-LTE does not distinguish between

license terms and their attitudes. Instead, it predefines a set of phrases that represent regulations
(e.g., MustOfferSourceCode), and utilizes a topic model to extract regulations from license texts.
Compared with FOSS-LTE, LiDetector learns and extracts information from license texts with
finer granularity. Specifically, it learns to identify license terms from texts, based on which it
infers the implied attitudes towards the identified terms. By this means, LiDetector is capable of
inferring regulations with more flexibility compared with predefined regulations.

For regular matching and LiDetector, we define the same set of attitude keywords, as well as the
same order to search for the attitude keywords. However, we observe that simple regular matching
is less effective than LiDetector in predicting attitudes. The characteristics of license sentences
may contribute to the gap between performances of regular matching and LiDetector. Specifically,
license sentences are typically long and complicated, which may contain massive tokens that are
irrelevant to the attitudes towards a target term. Regular matching equally compares each token in
the sentence with predefined keywords, which may introduce noise. In contrast, LiDetector filters
out irrelevant tokens by grammar parsing, narrows down the scope of searching for permissive
and restrictive expressions, and only analyzes powerful tokens that may have an influence on the
attitude toward a target entity.
The overall performance for license comprehension. To further investigate the performance
of LiDetector combining the first two phases, we also report the results over the entire process
of license term identification and attitude inference. Specifically, given a license, we first identify
license terms listed in Table 1. Then, the identified term entities, as well as the original license
sentences, were fed into the second phase, so as to infer the attitudes towards these terms. We
conduct the comparative study on the ground truth described in Section 4.1, and use precision,
recall, and F1 score to evaluate the performances of the compared methods. Table 7 summarizes the
results of each method. It can be seen that the combination of the methods used in LiDetector (i.e.,
sequence labelling and sentiment analysis) achieves the best performance among all combination
methods, with 85.88% precision, 69.70% recall, and 76.95% F1 score.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:18 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

Table 8. Results for Incompatibility Detection (“Conflict”: two incompatible attitudes towards the same term.)

Method #Pro. #Identified pro. #Conflicts FP FN

Ninka [15] 200 144 (117 overlap) 13,978 (12,509 overlap) 23 (15.97%) 35 (22.44%)
SPDX-VT [27] 200 71 (71 overlap) – 6 (8.45%) 91 (58.33%)
Librariesio [33] 200 169 (137 overlap) – 40 (23.67%) 27 (17.31%)

LiDetector (SPDX) 200 157 14,586 – –

LiDetector (All) 200 169 22,941 17 (10.06%) 4 (2.56%)

LiDetector (SPDX): the result for licenses only on SPDX; LiDetector (All): the result for all the extracted licenses.

4.4 Evaluation on Incompatibility Detection

4.4.1 Setup. To investigate the overall effectiveness of LiDetector in incompatibility detection,
we also compare LiDetector with three state-of-the-art tools, i.e., the SPDX Violation Tools (SPDX-
VT) [25, 27], Ninka [15] equipped with tldrlegal [30], and Librariesio [33], a license compatibility
checking tool for SPDX licenses. Since the other three tools are all based on the licenses on SPDX
due to their inability on custom licenses, to make a fair comparison, we conduct this experiment
and show the result in two ways: (1) Only the official licenses listed in the Software Package Data
Exchange (SPDX) [12] are considered for incompatibility detection. (2) All the licenses extracted
from the project are considered (including the custom ones) for incompatibility detection.
Specifically, we randomly selected 200 projects from the 1,846 GitHub projects described in

Section 2.3, and constructed a ground-truth dataset manually verified and cross-validated by three
authors and a lawyer. In total, we extracted 1,298 unique licenses (including 191 project licenses and
1,107 component licenses), with 1,041 official licenses and 257 custom ones. The ground-truth dataset
of incompatible projects has been made available online [66]. For each project, we first extract
licenses in three forms (i.e., declared, referenced, and inline), and then use the aforementioned tools
to detect the incompatibility issues. Note that, since we focus on license incompatibility detection
for software projects, the FP and FN metrics are computed at the project level. Moreover, we also
calculated the number of conflicts and overlaps for the these tools. In this paper, a conflict denotes a
specific incompatibility issue, which means two incompatible attitudes towards the same license
term. For instance, cannot disclose source versus must disclose source. We use overlap to denote the
number of incompatible projects/conflicts that can also be detected by LiDetector.

4.4.2 Results. Table 8 shows the incompatibility detection results on SPDX licenses only and all
the extracted licenses. As for the results on SPDX licenses only, it can be seen that LiDetector
detects 14,586 conflicts in 157 projects, while SPDX-VT only finds license incompatibility in 71 out
of 200 projects, all of which can be detected by LiDetector. Note that LiDetector filters all official
licenses whose regulations have already been known. For this reason, when only considering the
official licenses in SPDX [60], there are no false positives and false negatives. Since SPDX-VT
only predefined a graph to denote the compliance relationships between a set of licenses, the
output of SPDX-VT is relatively coarse-grained (i.e., without detailed explanation of how licenses
conflict with each other). Therefore, the number of conflicts detected by SPDX-VT are not presented
in Table 8. It can be seen that the number of false positives reported by SPDX-VT is 6. However,
the FN rate of SPDX-VT is 58.33%, nearly 30 times higher than that of LiDetector for all extracted
licenses. By analyzing the process of SPDX-VT, we found that it designs a strict rule that only a set
of license texts are identified and analyzed to detect incompatibility. However, the graph defined
by SPDX-VT only includes 20 popular licenses, other licenses can not be detected by SPDX-VT.
For the results on all extracted licenses, among 200 projects, LiDetector identified 22,941

conflicts in 169 projects, with 10.06% FP rate and 2.56% FN rate. Ninka equipped with tldrlegal
identified 13,978 conflicts in 144 projects, with 15.97% FP rate and 22.44% FN rate. It can be concluded
that LiDetector has the superiority over Ninka (equipped with tldrlegal) from the respects of both

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:19

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.
……
In addition, as a special exception, the copyright holders give permission to
link the code of this program statically.

GNU 3.0

Ninka

GNU 3.0 + Statically Link

LiDetector

Fig. 9. A License Exception in BDF [4] Misidentified by Ninka

precision and recall. By analyzing the reported results of Ninka, we found that some licenses are
customized by authors of software products, which cannot be identified by Ninka. For instance,
the component license in Fig. 2a is a custom license that cannot be identified by Ninka. Therefore,
Ninka equipped with tldrlegal cannot detect the incompatibility issue in Fig. 2a. In addition, some
licenses are exceptions of common open source licenses (i.e., license variants generated by developers
based on popular licenses, thus resulting in the modification of its term attitudes), which regulates
different rights and obligations but misidentified by Ninka. Fig. 9 shows a custom license which is
an exception of GNU 3.0. In this case, LiDetector first identified that the license referenced GNU
3.0; then, it fed the rest text into the probabilistic model and inferred “CAN Statistically Link” from
the text. However, Ninka only identified the license as GNU 3.0 ignoring the custom exceptions. As
a result, the accuracy of Ninka limits its effectiveness in detecting license incompatibility.
Librariesio [33] identified 169 incompatible projects, with 23.67% FP rate and 17.31% FN rate.

Similar to SPDX-VT, the number of conflicts detected by Librariesio are also not presented in Table 8,
since Librariesio provides no detailed explanation about how licenses conflict with each other.
By analyzing the results of Librariesio and LiDetector, we found that the FP rate of Librariesio
is more than twice as high than that of LiDetector and the FN rate of Librariesio is almost 8
times higher. The reason are two folds. First, Librariesio detects incompatibility between a set of
SPDX licenses, while other licenses are ignored. Second, Librariesio detects incompatibility with a
predefined set of heuristic rules, which might not be suited for large amounts of licenses which are
flexible in expressions.

It can also be seen that the FP rate of LiDetector is 10.06%. By analyzing the false positives, we
found that some license terms were not correctly identified from license texts, especially for license
terms such as Statically Link and Relicense. The reason behind is that these license terms do not as
frequently occur as other terms in the training dataset, which poses challenges in identifying these
terms. We note that false negatives in the first phrase (i.e., license term identification) could lead
to both false positives and false negatives in incompatibility detection. Another reason for false
positives is the limitation of Stanford CoreNLP [20]. For instance, in the project Blosc [5], there is a
license sentence:
“... In any action to enforce the terms of this License or seeking damages relating thereto, its costs and
expenses, including, without limitation, reasonable attorneys’ fees and costs incurred in connection
with such action, including any appeal of such action, shall be recovered for the prevailing party ...”
From this sentence, LiDetector identified the license term Compensate for Damages. However,
when inferring the attitudes towards this license term, Stanford CoreNLP [20] failed to parse
the whole sentence, since the sentence is too long. The part of sentence “shall be recovered for
the prevailing party” was ignored by the tool, leading to the inference results to be CAN instead
of MUST. Due to the wrong parsing result, LiDetector failed to extract the obligation “MUST
Compensate for Damages” from the project license, leading to a false positive.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:20 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

Table 9. Overall Status of License Incompatibility

# Total projects # Incompatible projects # Conflicts

1,846
1,346 75,249

PL vs CL CL vs CL PL vs CL CL vs CL

1,087 (80.76%) 259 (19.24%) 66,447 (88.30%) 8,802 (11.70%)
PL: Project License; CL: Component License

Table 10. The Number of Official and Custom Licenses Involved in Conflicts

Official vs. Official Custom vs. Official Custom vs. Custom

# Conflicts 43,780 29,835 1,634
# Projects 1,324 384 13

5 EMPIRICAL STUDY ON COMPATIBILITY ANALYSIS

By leveraging LiDetector, we further conduct an empirical study on the 1,846 projects collected
from Github, so as to investigate incompatibility issues in real-world OSS licenses.

5.1 Overall status of incompatibility issues

Among 1,846 projects, LiDetector detected 75,249 conflicts in 1,346 projects, i.e., 72.91% projects
suffer from license incompatibility issues according to LiDetector. The evaluation results can
be seen in Table 9 and Table 10. Compared with the incompatible project rate (i.e., 48.86%) in the
motivating study (Section 2.3), LiDetector is capable of detecting more incompatibility issues in
OSS licenses owing to its ability for custom licenses.

To better understand the incompatibility status, we take an in-depth analysis on the incompatibil-
ity issues detected by LiDetector from two aspects: (1) incompatibility involving project licenses
and component licenses (Table 9); and (2) incompatibility involving official licenses and custom
licenses (Table 10). For the first aspect, we divide the incompatibility issues into two categories:
a) incompatibility between component licenses, and b) incompatibility between a project license
and a component license. We can see that 1,087 out of 1,846 projects were found to have compli-
ance issues between their project licenses and their component licenses, while only 259 projects
contain incompatibility issues between component licenses. We also show the exact number of
conflicts detected by LiDetector in Table 9. The values in the column PL vs CL are the numbers
of incompatibility issues between a project license and a component license. It can be seen that
among all investigated projects, conflicts often occur between a project license and a component
license. In other words, given an open source project, it is often the case where users who conform
to the license of the whole project may violate licenses of some components. The difficulty to
combine licenses from different components into the whole project license may account for this
phenomenon. The investigation results encourage developers to pay more attention to creating the
license for the whole project especially when they integrate third-party software components with
licenses in their projects.
Table 10 shows the detailed result about the number of official licenses and custom licenses

involved in license incompatibility. It can be seen that 1,324 projects have incompatibility issues
between a pair of official licenses; 384 projects have incompatibility issues between an official
license and a custom license; only 13 projects contains conflicts between a pair of custom licenses.
The results are consistent with the observation that a majority of licenses are based on official
licenses. We can also observe that custom licenses are involved in 31,469 conflicts and 397 projects.
In other words, even all official licenses are compatible with each other, there are still near 21.5% of
1,846 projects that have incompatibility issues.
Impact of the default attitude towards an absence term. As aforementioned in Section 3.5,
following the rule declared by choosealicense [8], if a license term does not appear in the license

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:21

Table 11. Incompatible Projects with Different Sizes.

Pro. Size (KB) #Pro. #Incomp. pro. #Conflicts

<= 999 840 550 (65.48%) 12,899
1,000∼4,999 551 426 (77.31%) 20,757
5,000∼9,999 281 219 (77.94%) 12,081
>= 10,000 174 151 (86.78%) 29,512
Total 1,846 1,346 75,249

Table 12. Projects with Different Numbers of CLs.

#CL #Pro. #Incomp. pro. #Conflicts

<= 24 887 479 (54.00 %) 7,283
25∼49 495 428 (86.46%) 11,272
50∼99 316 294 (93.04%) 12,503
>= 100 148 145 (97.97%) 44,191
Total 1,846 1,346 75,249

according to LiDetector, the default attitude towards this term is set to CANNOT, which implies
that nobody can copy, distribute, or modify the work. To further investigate the impact of such
a default setting, we also conduct an ablation study where the default attitude of absent terms is
set to CAN. The results show that when the default attitude of absent terms is CAN, LiDetector
detected 1,104 incompatible projects with 10,507 license incompatibility issues. When the default
setting is CANNOT, LiDetector detected 1,346 incompatible projects with 75,249 incompatibility
issues. It can be seen that when the default attitude is set to CANNOT, LiDetector detected
more incompatible projects with seven times of the number of incompatibility issues. A possible
reason is that there exist more restrictive statements than permissive statements when the default
setting of absent terms is set to CANNOT. Nevertheless, it has more influence on the number of
detected incompatibility issues than incompatible projects. A large number of absent license terms
in component licenses might account for such difference.
The impacts of project size and the number of component licenses. To analyze the distribu-
tion of incompatibility issues from other dimensions, e.g., project size and the number of component
licenses, we divide projects into different groups and show the results in Table 11 and Table 12.
From Table 11, we can see that projects that have larger size are more likely to trigger license
incompatibility, which is because larger projects possibly own more imported packages and more
complex dependency construction [36]. From Table 12, we can see that projects that have more
component licenses are more likely to trigger license incompatibility. Especially for projects con-
taining more than 100 component licenses, almost all of these projects (i.e., 97.97%) have license
incompatibility issues. The results show that projects with many components need to be noticed
for the potential risk towards license incompatibility.

5.2 Top licenses with incompatibility issues

To analyze the relationships between incompatibility and license types, we counted the number of
licenses involved in the incompatibility issues. Specifically, we found that common open source
licenses (official licences) are incompatible with other licenses in 1,346 projects with 117,395 conflicts,
and custom licenses are incompatible with other licenses in 384 projects with 33,103 conflicts. Note
that we used Ninka [15] to identify well-known licenses. Each conflict occurs between two licenses,
and the total number of conflicts detected by LiDetector is still 75,249 The reason why well-
known licenses contribute to more than half of incompatibility issues is twofold: first, well-known
licenses are frequently used in OSS; second, third-party packages and libraries incorporated by
developers are often accompanied with common licenses, which may induces incompatibility with
the project license. Nevertheless, custom licenses and exceptions also account for a considerable
number of incompatibility issues, which indicates that relying on well-known licenses to detect
incompatibility is not effective enough. A tool that is capable of analyzing compatibility for both
well-known and custom licenses are needed for practical use. Finally, we counted the number of
each license to be involved in the incompatibility issues, and sorted them from high to low. We
found that the top 5 common open source licenses areMIT License [57], Zope Public License 2.1 [58],
Apache License 2.0 [53], GNU Lesser General Public License v3 [56], and BSD 3-Clause License [54].
For example, in the project HaboMalHunter [23] , the project license is the MIT License that states

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:22 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

Table 13. Top 10 Terms with Incompatibility Issues

ID Term #Conflicts #Pro. Incompatibility Type

1 Sublicense 7,801 604 Can↔Cannot

2 Use Trademark 7761 933 Can↔Cannot, Can↔Must,
Cannot↔Must

3 Commercial Use 7,418 720 Can↔Cannot
4 Distribute 6,716 824 Can↔Cannot
5 Modify 6,564 749 Can↔Cannot
6 Place Warranty 5,544 489 Can↔Cannot
7 Include Copyright 4,741 1,303 Cannot↔Must
8 Include License 4,312 1,306 Cannot↔Must
9 State Changes 2,714 969 Can↔Must, Cannot↔Must

10 Disclose Source 2,670 1,085 Can↔Cannot, Can↔Must,
Cannot↔Must

“CAN Sublicense”, while one of the component licenses is the Wizardry License that regulates
“CANNOT Sublicense”. In this case, developers who conform to the project license may still violate
the component license, which leads to incompatibility issues.

5.3 Top 10 license terms with incompatibility issues

To further analyze the reasons of the incompatibility issues, we list the top 10 license terms
involved in license incompatibility in Table 13. For each license term, we show the number of
incompatible projects (#Pro.), the number of conflicts (#Conflicts), and the type of incompatibility
(Incompatibility Type). It can be seen that Sublicense, Use Trademark, and Commercial Use are the
top 3 license terms that lead to incompatibility issues, affecting 7,801, 7,761, and 7,418 conflicts,
respectively. For Sublicense, we find that the incompatibility typically occurs when a project license
indicates that users CAN incorporate the work into works with more restrictive licenses, while its
component license declares CANNOT. The same can be seen in Commercial Use, where a project
license allows using the project for commercial purposes, while its component licenses declares
CANNOT. Developers need to pay attention to these license terms especially when they incorporate
third-party software packages accompanied with licenses, since unauthorized use of such packages
may lead to the legal and financial risks.
We can also observe that Include License is involved in projects most frequently (i.e., in 1,306

projects with license incompatibility), which is very common license term among most open
source software licenses. For Include License, the incompatibility usually occurs between the two
component licenses; one license component declares that users MUST include the full text of license
in modified software, while another component license declares CANNOT.

We also investigated the top 5 license terms with incompatibility issues for official licenses and
custom licenses, respectively. As shown in Table 14, there are some differences between the top
license terms with conflicts of official licenses and custom licenses. Specifically, the top 3 terms
of custom licenses are Distribute, Commercial Use, and Modify, while the top 3 terms of official
licenses are Use Trademark, Sublicense, and Commercial Use. We can also observe that in both
official and custom licenses, top 5 conflict terms are all right-related terms. The results encourage
developers to pay more attention on the rights conveyed by licenses. Finally, some license terms
are not frequently involved in conflicts. It does not mean that these license terms are more reliable
than others, since the reason behind might be that they are rarely used in licenses.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:23

Table 14. Top 5 Terms with Incompatibility Issues in Official Licenses and Custom Licenses

No. 1 2 3 4 5
Official Use Trademark Sublicense Commercial Use Modify Distribute
Custom Distribute Commercial Use Modify Sublicense Use Trademark

6 DISCUSSION

In this section, we first discuss the lessons learned from perspectives of different stakeholders (i.e.,
developers, commercial product managers), and then discuss the limitations and threats to validity.

6.1 Lessons Learned

From the perspective of developers, although open source software facilitates software devel-
opment, developers need to pay more attention to the compatibility between multiple licenses,
especially when incorporating third-party software packages. First, as revealed in the empirical
study (Section 5), over 70 percent of popular projects in GitHub suffer from the problem of license
incompatibility, each of which contains 56 pairs of conflict licenses in average. Second, developers
need to carefully select the project license, since more than 80% conflicts occur between the project
license and other licenses. Especially for projects incorporating third-party software packages,
developers are expected to check all component licenses and select the license that are more
restrictive than component licenses as the project license. For instance, although widely-used and
very permissive, licenses such as the MIT License are often involved in incompatibility issues when
they are used as a project license. Third, licenses may have different versions and exceptions that
regulate different rights and obligations. Developers are also allowed to create their own licenses
based on some official licenses (i.e., exceptions). Relying on license identification tools such as
Ninka [15] may lead to misunderstandings of license texts, resulting in license incompatibility
issues. LiDetector can help developers understand the semantics of license texts automatically and
then detect license incompatibility within a project. With the assistant of LiDetector, developers
can avoid infringements of laws and rules when reusing existing knowledge.
From the perspective of commercial product manager, although common open source li-
censes are popular in the OSS community, authors can also create their own licenses, which are
difficult to be identified with existing tools. When reusing knowledge from OSS, companies should
be aware of the risk of incompatible licenses, especially the attitudes of authors towards Sublicense,
Use Trademark, and Commercial Use as revealed in Section 5. With the ability to detect license
incompatibility, LiDetector can help commercial companies examine the compatibility between
multiple licenses accurately, so as to avoid financial and legal risks. In addition, with LiDetector,
product managers can acquire license terms and attitudes implied by each license, which provide
useful information for product managers to select an appropriate license or create a new license
for their software products.

6.2 Limitations and Threats to Validity

Limitations. LiDetector utilizes the Stanford CoreNLP tool [20] to preprocess and parse license
sentences. For this reason, the effectiveness of Stanford CoreNLP affects the accuracy of LiDetector.
For instance, by analyzing the evaluation results, we found that when the target sentence is too long
and complicated, Stanford CoreNLP only parsed parts of the sentence, which affects the effectiveness
of LiDetector. In addition, we construct a probabilistic model to identify license terms, therefore
it cannot be ensured that all license terms can be identified by the proposed model. Nevertheless,
from our experimental results, we can see LiDetector failed to detect incompatibility issues in
only 17 cases, with 10.06% FP rate and 2.56% FN rate. Therefore, LiDetector is still effective to
detect license incompatibility for most projects. Another limitation is that LiDetector cannot

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:24 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

filter out irrelevant licenses. For example, for files that are only for testing purposes and are not
really component files, if they contain licenses and should not be considered for incompatibility
detection, LiDetector cannot filter them out. Moreover, for licenses that are neither designated
in the target projects nor obtained by LiDetector from external resources, LiDetector fails to
collect these licenses and detect incompatibility. For instance, although LiDetector collects licenses
accompanied with imported packages, for packages whose sources cannot be found, LiDetector
can not collect them and detect incompatibility. Another example is that if derivative works only
reuse OSS code without any licenses or references, LiDetector cannot obtain licenses and thus
cannot detect license incompatibility in this case. Some related research directions such as clone
detection [32] and license compliance detection [14] address such issues, while this paper only
focuses on incompatibility between multiple licenses within the same project. Finally, for referenced
licenses, we collect licenses accompanied with imported packages, while ignoring packages which
are further imported by these packages.
Threats to Validity. (1) LiDetector identifies 23 types of license terms from each license to detect
incompatibility. Nevertheless, there could be a few cases where authors of software products have
special requirements outside the scope of LiDetector. (2) In addition, LiDetector may detect
some incompatibility issues based on the inaccurate results from the previous two phases (i.e., term
identification, and right and obligation inferring), leading to false positives. However, according
to our experiments, the accuracy of the two phases achieves over 90%, and the incompatibility
detection accuracy also reaches over 90%, which is much higher than state-of-the-art tools. (3)
Another threat may be that due to the substantial manual effort of labelling, we were not able
to collect a large-scale dataset for license entity tagging. However, we employ a semi-supervised
learning method that incorporates unlabelled samples for training. The experimental results show
that LiDetector achieves 93.28% precision and 83.58% F1 score when identifying license terms,
which outperforms the baselines in this phase. (4) The performance of LiDetector was evaluated
on a ground-truth dataset comprising 200 popular projects, and the quality of the test set may
threaten the results. To mitigate this problem, three experts manually verified and cross-validated
the dataset, which has been made available online for further study [66].

7 RELATEDWORK

7.1 Semantic Extraction

License texts are typically long and complicated, which are not straightforward for developers to
understand. To facilitate the process of understanding and choosing licenses, much research has
been done to extract license semantics. The previous studies can be categorized into two groups.
The ontology study. Alspaugh et al. [1] [2] extracted tuples (e.g., actor, action, and object) from
license texts to model 10 licenses. Gordon et al. [9] used the Web Ontology Language (OWL)
tool to build the ontology for OSS licenses and projects. With manual analysis, the constructed
ontology contains knowledge from 8 popular licenses. Based on this ontology, the authors further
analyzed license compatibility for open source software [17], and developed the MARKOS license
analyzer [18] [19]. These studies typically extracted information from license texts by manually
analyzing several licenses, which limits its application scope.
Term extraction. FindOSSLicense [25] classified and summarized license sentences in 24 license
texts through manual analysis, and obtained terms to model licenses. Based on a topic model, FOSS-
LTE [28] identified license terms by mapping licenses terms with sentences, and mapping sentences
with topics by Latent Dirichlet Allocation (LDA). By this means, it built the relationships between
terms and topics. FOSS-LTE is most related to this work, focusing on the automated extraction of
license terms to help developers better understand of licenses. However, the simple topic model

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:25

employed by FOSS-LTE may introduce much noise, which could be a possible explanation for
the low accuracy of FOSS-LTE. In contrast, LiDetector prepossesses licenses with a clustering
technique, followed by a two-phase learningmethod (i.e., term entity extraction, right and obligation
inference), which is capable of extracting licenses flexible in expressions. In addition, LiDetector
employs semi-supervised learning to train the term entity extraction model so as to save the
labelling effort and enhance performance.

7.2 License Identification

In order to facilitate the understanding of licenses, some studies attempted to identify common
licenses automatically. Gobeille et al. [16] implemented FOSSology that uses a binary Symbol
Alignment Matrix algorithm (bSAM) to identify licenses. Tuunanen et al. [62] developed a tool
called ASLA to identify software licenses based on regular expressions, and analyze the interactions
between a set of licenses. Similarly, Xu et al. [65] proposed regular matching to identify licenses
including their names and versions. German et al. [15] developed Ninka for automated license
identification based on sentence matching. Higashi et al. [24] exploited the cluster learning method
to further identify licenses marked as unknown by Ninka, as a supplementary study.

Despite the progress, previous studies on license identification requires much prior knowledge
from experts, and can only be applied on a predefined set of licenses. In contrast, LiDetector
learns to extract the semantics of licenses from a large corpus of license sentences, which equips it
with the capability to analyze arbitrary licenses which are flexible in expressions.

7.3 License Incompatibility Detection

To avoid legal and financial risks, recently, much research has been done to detect license incom-
patibility. A major of studies on license incompatibility detection are graph-based approaches [26,
27, 41, 63]. Typically, these studies manually constructed a graph to describe the compatibility
relationships between a set of licenses, and detected incompatibility between these licenses by
traversing the nodes and edges of the graph. For instance, Paschalides and Kapitsaki [41] proposed
a tool named SLVT, which is based on the directed acyclic license graph, to examine license viola-
tions that may exist in a single or multiple SPDX files. Although strict and efficient, there exist
a large number of licenses in real-word OSS, including various versions, exceptions, and custom
licenses. Therefore, it is difficult to manually analyze the relationships between all licenses. Unlike
graph-based approaches, LiDetector is a flexible and extensible tool that can be applied on an
arbitrary license without prior knowledge, which enlarges its application scope.

8 CONCLUSION

In this paper, we propose LiDetector, an automated and effective tool to detect license incom-
patibility for open source software. It first identifies license terms and then infers the attitudes
of authors towards identified terms. The experimental results demonstrate the effectiveness of
LiDetector in incompatibility detection for OSS. We also study the license incompatibility status
on 1,846 real-world open source projects by leveraging LiDetector, and analyze the characteristics
of incompatibility issues and licenses. Our large-scale empirical study on 1,846 projects reveals
that 72.91% of the projects are suffering from license incompatibility, including popular ones such
as the MIT License and the Apache License. We highlighted lessons learned from perspectives
of different stakeholders. All the datasets [66] and the replication package [67] are released for
follow-up research. We believe LiDetector can benefit different stakeholders (e.g., developers) in
terms of license compatibility.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:26 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

ACKNOWLEDGEMENT

This work was supported by National Natural Science Foundation of China (No. 62102197) and
National Key Research Project of China (No. 2021YFF0307202 and No. 2020YFB1005700).

REFERENCES

[1] Thomas A Alspaugh, Hazeline U Asuncion, and Walt Scacchi. 2009. Intellectual property rights requirements for
heterogeneously-licensed systems. In Proceedings of the 17th IEEE International Requirements Engineering Conference.
24–33.

[2] Thomas A Alspaugh, Walt Scacchi, and Hazeline U Asuncion. 2010. Software licenses in context: The challenge of
heterogeneously-licensed systems. Journal of the Association for Information Systems 11, 11 (2010), 2.

[3] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker, William Enck, Bradley Reaves, Kapil Singh,
and Tao Xie. 2019. Policylint: investigating internal privacy policy contradictions on Google Play. In Proceedings of the
28th USENIX Conference on Security Symposium. 585–602.

[4] BDF. 2021. The Backdoor Factory. https://github.com/secretsquirrel/the-backdoor-factory.
[5] Blosc. 2021. A blocking, shuffling and lossless compression library. https://github.com/Blosc/c-blosc.
[6] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue, Yang Liu, and Lihua Xu. 2020. An empirical

assessment of security risks of global android banking apps. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 1310–1322.

[7] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, and Lihua Xu. 2018. Are mobile banking apps
secure? what can be improved?. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 797–802.

[8] choosealicense. 2012. Choose an open source license. https://choosealicense.com/no-permission/.
[9] Gordon Thomas F. 2010. Report on prototype decision support system for oss license compatibility issues. Qualipso

(2010), 80.
[10] facebookarchive. 2021. Augmented Traffic Control. https://github.com/facebookarchive/augmented-traffic-control.
[11] Runyu Fan, Lizhe Wang, Jining Yan, Weijing Song, Yingqian Zhu, and Xiaodao Chen. 2020. Deep learning-based

named entity recognition and knowledge graph construction for geological hazards. ISPRS International Journal of
Geo-Information (2020).

[12] Linux Foundation. 2018. The Software Package Data Exchange. https://spdx.dev/.
[13] GR Gangadharan, Vincenzo D’Andrea, Stefano De Paoli, and Michael Weiss. 2012. Managing license compliance in

free and open source software development. Information Systems Frontiers (2012), 143–154.
[14] Daniel German and Massimiliano Di Penta. 2012. A method for open source license compliance of java applications.

IEEE software 29, 3 (2012), 58–63.
[15] Daniel M. German, Yuki Manabe, and Katsuro Inoue. 2010. A sentence-matching method for automatic license

identification of source code files. In Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering. 437–446.

[16] Robert Gobeille. 2008. The fossology project. In Proceedings of the 2008 International Working Conference on Mining
Software Repositories. 47–50.

[17] Thomas F. Gordon. 2011. Analyzing open Source license compatibility issues with Carneades. In Proceedings of the
13th International Conference on Artificial Intelligence and Law. 51–55.

[18] Thomas F. Gordon. 2013. Introducing the Carneades web application. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Law. 243–244.

[19] Thomas F. Gordon. 2014. A demonstration of the MARKOS license analyser. In Proceedings of the 5th International
Conference on Computational Models of Argument. 461–462.

[20] Stanford NLP Group. 2020. corenlp. https://stanfordnlp.github.io/CoreNLP/.
[21] Hao Guo, Sen Chen, Zhenchang Xing, Xiaohong Li, Yude Bai, and Jiamou Sun. 2021. Detecting and Augmenting

Missing Key Aspects in Vulnerability Descriptions. ACM Transactions on Software Engineering and Methodology
(TOSEM) (2021).

[22] Hao Guo, Zhenchang Xing, Sen Chen, Xiaohong Li, Yude Bai, and Hu Zhang. 2021. Key aspects augmentation of
vulnerability description based on multiple security databases. In 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC). IEEE, 1020–1025.

[23] HaboMalHunter. 2021. Habo Linux Malware Analysis System. https://github.com/Tencent/HaboMalHunter.
[24] Yunosuke Higashi, Yuki Manabe, and Masao Ohira. 2016. Clustering OSS license statements toward automatic

generation of license rules. In Proceddings of the 7th International Workshop on Empirical Software Engineering in
Practice. 30–35.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



LiDetector: License Incompatibility Detection for Open Source Software 1:27

[25] Georgia Kapitsaki and Georgia Charalambous. 2019. Modeling and recommending open source licenses with find-
OSSLicense. IEEE Transactions on Software Engineering (2019).

[26] Georgia M. Kapitsaki and Frederik Kramer. 2014. Open source license violation check for SPDX files. In Software Reuse
for Dynamic Systems in the Cloud and Beyond. 90–105.

[27] Georgia M. Kapitsaki, Frederik Kramer, and Nikolaos D. Tselikas. 2017. Automating the license compatibility process
in open source software with SPDX. Journal of Systems and Software (2017), 386 – 401.

[28] Georgia M. Kapitsaki and Demetris Paschalides. 2017. Identifying terms in open source software license texts. In
Proceedigns of the 24th Asia-Pacific Software Engineering Conference. 540–545.

[29] Petros Karvelis, Dimitris Gavrilis, George Georgoulas, and Chrysostomos Stylios. 2018. Topic recommendation using
Doc2Vec. In 2018 International Joint Conference on Neural Networks. 1–6.

[30] kevin. 2012. Software Licenses in Plain English. https://tldrlegal.com/.
[31] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of the 31st

International Conference on Machine Learning. 1188–1196.
[32] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017. Cclearner: A deep learning-based clone

detection approach. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
249–260.

[33] librariesio. 2015. Check compatibility between different SPDX licenses for checking dependency license compatibility.
https://github.com/librariesio/license-compatibility.

[34] Open Source Licensing. 2004. Software freedom and intellectual property law.
[35] Ling. 2003. Alphabetical list of part-of-speech tags used in the Penn Treebank Project.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.
[36] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng. 2022. Demystifying the Vulnerability

Propagation and Its Evolution via Dependency Trees in the NPM Ecosystem. In 2022 IEEE/ACM 44nd International
Conference on Software Engineering (ICSE). IEEE.

[37] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen.
2006. Managing the complexity of large free and open source package-based software distributions. In 21st IEEE/ACM
International Conference on Automated Software Engineering. 199–208.

[38] Arunesh Mathur, Harshal Choudhary, Priyank Vashist, William Thies, and Santhi Thilagam. 2012. An empirical study
of license violations in open source projects. In Proceedings of the 35th Annual IEEE Software Engineering Workshop.
168–176.

[39] nltk. 2021. Natural Language Toolkit. https://www.nltk.org/.
[40] Opensource. 2021. What is open source? https://opensource.com/resources/what-open-source.
[41] Demetris Paschalides and Georgia M Kapitsaki. 2016. Validate your SPDX files for open source license violations. In

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 1047–1051.
[42] paul. 2021. Full extractor of class/interface/method definitions. https://github.com/paul-hammant/qdox.
[43] pivotal. 2021. Find licenses for your project’s dependencies. https://github.com/pivotal/LicenseFinder.
[44] ProgrammerSought. 2021. The first case of GPL agreement in China is settled. How should the relevant open source

software be controlled?
[45] PyPi. 2021. Find, install and publish Python packages with the Python Package Index. https://pypi.org/.
[46] Jaideep Reddy. 2015. The Consequences of Violating Open Source Licenses. https://btlj.org/2015/11/consequences-

violating-open-source-licenses/.
[47] Nils Reimers and Iryna Gurevych. 2017. Optimal hyperparameters for deep LSTM-networks for sequence labeling

tasks. arXiv e-prints (2017). arXiv:1707.06799
[48] Christopher D. Manning Richard Socher. 2014. GloVe: Global Vectors for Word Representation.

https://nlp.stanford.edu/projects/glove/.
[49] robinhood. 2021. Faust. https://github.com/robinhood/faust.
[50] Colin Scicluna, James de la Higuera. 2016. Grammatical inference of PCFGs applied to language modelling and

unsupervised parsing. Fundamenta Informaticae (2016), 379–402.
[51] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts.

2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. 1631–1642.

[52] Georgios S. Solakidis, Konstantinos N. Vavliakis, and Pericles A. Mitkas. 2014. Multilingual sentiment analysis using
emoticons and keywords. In Proceedings of the IEEE/WIC/ACM International Joint Conferences on Web Intelligence and
Intelligent Agent Technologies. 102–109.

[53] SPDX. 2018. Apache License 2.0. https://spdx.org/licenses/Apache-2.0.html.
[54] SPDX. 2018. BSD 3-Clause "New" or "Revised" License. https://spdx.org/licenses/BSD-3-Clause.html.
[55] SPDX. 2018. Creative CommonsAttribution Share Alike 4.0 International. https://spdx.org/licenses/CC-BY-SA-4.0.html.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://arxiv.org/abs/1707.06799


1:28 Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji

[56] SPDX. 2018. GNU Lesser General Public License v3.0 only. https://spdx.org/licenses/LGPL-3.0-only.html.
[57] SPDX. 2018. The MIT License. https://spdx.org/licenses/MIT.html.
[58] SPDX. 2018. Zope Public License 2.1. https://spdx.org/licenses/ZPL-2.1.html.
[59] SPDX. 2021. Creative Commons Attribution 3.0 Unported. https://spdx.org/licenses/CC-BY-3.0.html.
[60] SPDX. 2021. SPDX License List. https://spdx.org/licenses/.
[61] Statsite. 2021. Statsite. https://github.com/statsite/statsite.
[62] Tuunanen Timo, Koskinen Jussi, and Kärkkäinen Tommi. 2009. Automated software license analysis. Automated

Software Engineering 16 (2009), 455–490.
[63] David A. Wheeler. 2007. The free-libre / open source software (FLOSS) license slide. http://www.dwheeler.

com/essays/floss-license-slide.pdf.
[64] Linzhong Xia, Jun Liu, and Zhenjiu Zhang. 2019. Automatic essay scoring model based on two-layer bi-directional

long-short term memory network. In Proceedings of the 2019 3rd International Conference on Computer Science and
Artificial Intelligence. 133–137.

[65] HongBo Xu, HuiHui Yang, Dan Wan, and JiangPing Wan. 2010. The design and implement of open source license
tracking system. In Proceddings of the 2010 International Conference on Computational Intelligence and Software
Engineering. 1–4.

[66] Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji. 2021. LiDetector: License Incompatiblity Detection for
Open Source Software. https://sites.google.com/view/lidetector.

[67] Sihan Xu, Ya Gao, Lingling Fan, Zheli Liu, Yang Liu, and Hua Ji. 2021. LiDetector: License Incompatiblity Detection for
Open Source Software. https://github.com/XuSihan/LiDetector.

[68] Xian Zhan, Lingling Fan, Sen Chen, Feng Wu, Tianming Liu, Xiapu Luo, and Yang Liu. 2021. Atvhunter: Reliable
version detection of third-party libraries for vulnerability identification in android applications. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 1695–1707.

[69] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei Xu, Xiapu Luo, and Yang Liu. 2020.
Automated third-party library detection for android applications: Are we there yet?. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 919–930.

[70] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang Liu. 2021. Research on Third-Party
Libraries in Android Apps: A Taxonomy and Systematic Literature Review. IEEE Transactions on Software Engineering
(2021).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.


	Abstract
	1 Introduction
	2 Background
	2.1 OSS License
	2.2 License Incompatibility
	2.3 Motivating Study
	2.4 Running Example
	2.5 Problem Statement

	3 Approach
	3.1 Overview
	3.2 Preprocessing
	3.3 License Term Identification
	3.4 Right and Obligation Inference
	3.5 Incompatibility Detection

	4 Evaluation
	4.1 Preparation
	4.2 Evaluation on License Term Identification
	4.3 Evaluation on Right and Obligation Inference
	4.4 Evaluation on Incompatibility Detection

	5 Empirical Study on Compatibility Analysis
	5.1 Overall status of incompatibility issues
	5.2 Top licenses with incompatibility issues
	5.3 Top 10 license terms with incompatibility issues

	6 Discussion
	6.1 Lessons Learned
	6.2 Limitations and Threats to Validity

	7 Related Work
	7.1 Semantic Extraction
	7.2 License Identification
	7.3 License Incompatibility Detection

	8 Conclusion
	References

