
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 1

Why My App Crashes? Understanding and
Benchmarking Framework-specific Exceptions

of Android apps
Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong Su

Abstract—Mobile apps have become ubiquitous. Ensuring their correctness and reliability is important. However, many apps still suffer
from occasional to frequent crashes, weakening their competitive edge. Large-scale, deep analyses of the characteristics of real-world
app crashes can provide useful insights to both developers and researchers. However, such studies are difficult and yet to be carried
out — this work fills this gap. We collected 16,245 and 8,760 unique exceptions from 2,486 open-source and 3,230 commercial Android
apps, respectively, and observed that the exceptions thrown from Android framework (termed “framework-specific exceptions”) account
for the majority. With one-year effort, we (1) extensively investigated these framework-specific exceptions, and (2) further conducted an
online survey of 135 professional app developers about how they analyze, test, reproduce and fix these exceptions. Specifically, we
aim to understand the framework-specific exceptions from several perspectives: (i) their characteristics (e.g., manifestation locations,
fault taxonomy), (ii) the developers’ testing practices, (iii) existing bug detection techniques’ effectiveness, (iv) their reproducibility and
(v) bug fixes. To enable follow-up research (e.g., bug understanding, detection, localization and repairing), we further systematically
constructed, DroidDefects, the first comprehensive and largest benchmark of Android app exception bugs. This benchmark contains 33
reproducible exceptions (with test cases, stack traces, faulty and fixed app versions, bug types, etc.), and 3,696 ground-truth
exceptions (real faults manifested by automated testing tools), which cover the apps with different complexities and diverse exception
types. Based on our findings, we also built two prototype tools: Stoat+, an optimized dynamic testing tool, which quickly uncovered
three previously-unknown, fixed crashes in Gmail and Google+; ExLocator, an exception localization tool, which can locate the root
causes of specific exception types. Our dataset, benchmark and tools are publicly available on https:// github.com/ tingsu/ droiddefects.

Index Terms—Mobile applications, Android applications, empirical study, exception analysis, software testing, bug reproducibility

F

1 INTRODUCTION

MOBILE apps have become ubiquitous recently. For
example, Google Play, Google’s official Android app

market, contains over three million apps; over 50,000 apps
are continuously published on it [1] each month. To ensure
the competitive edge, app developers strive to deliver high-
quality apps [2]. One of their primary concerns is to prevent
fail-stop errors (i.e., app crashes) from releases [3], [4].

1.1 Motivations
In industry, many testing frameworks (e.g., Robotium [5],

Appium [6]) and static checking tools (e.g., Lint [7], Find-
Bugs [8]) are available [9], [10] to improve app quality.
However, many released apps still suffer from crashes. Two
recent studies [11], [12] discovered hundreds of previously
unknown crashes in popular and well-tested commercial

• T. Su is with School of Software Engineering, East China Normal Univer-
sity, China and Department of Computer Science, ETH Zurich, Switzer-
land. Email: tsuletgo@gmail.com. L. Fan is with College of Cyber Science,
Nankai Univerisity, China and Nanyang Technological University, Singa-
pore. S. Chen is with College of Intelligence and Computing, Tianjin Uni-
versity, China and Nanyang Technological University, Singapore. Y. Liu
is with School of Computer Science and Engineering, Nanyang Techno-
logical University, Singapore. Email: {llfan,chensen,yangliu}@ntu.edu.sg.
L. Xu is with Department of Computer Science and Engineering, New
York University Shanghai, China. Email: lihua.xu@nyu.edu. G. Pu is
with School of Computer Science and Software Engineering, East China
Normal University, China.Email: ggpu@sei.ecnu.edu.sg Z. Su is with
Department of Computer Science, ETH Zurich, Switzerland. Email:
zhendong.su@inf.ethz.ch.

• Lingling Fan and Geguang Pu are the corresponding authors.

apps. This may make developers wondering “why my app
crashes?”. Researchers have proposed a number of testing
techniques and tools [13], [14], [15], [16], [17], [18], [19],
[20], [21], [11], [22], [12], [23], [24] to reveal app crashes.
However, none of them investigated the root causes of these
crashes. Without the answer to this question, developers
may not know how to effectively avoid and fix these bugs.
By analyzing the 272,629 issues mined from 2,174 Android
apps hosted on GitHub and Google Code, we find nearly
40% of the reported crash issues remain open/unfixed
(filtered by the keywords “crash” or “exception” in their
issue descriptions). This situation could compromise the
app quality, considering these issues may probably lead to
fail-stop errors after releasing. Even worse, due to the lack
of understanding of root causes, the follow-up research,
e.g., bug detection, localization and repairing, might be
constrained. For example, existing fault localization [25] and
repairing [26], [27] tools for Android apps are limited to
a small set of trivial crash bugs. Thus, it is important to
conduct such a study — characterizing the root causes from
a large-scale, diverse set of real-world app crashes, and
investigating how to effectively detect, reproduce, and fix
them. However, such a study is difficult and yet to be carried
out, which has motivated this work.

Routinely, when an app crashes, the Android runtime
system will dump an exception trace that provides certain
clues of the issue (e.g., the exception type, message, and the
stack of invoked methods). Based on the architecture layer

https://github.com/tingsu/droiddefects

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 2

throwing the exception, each exception can be classified into
one of three categories — application exception, framework
exception1, and library exception (cf. Section 2.1). Specifically,
we find framework exceptions account for the majority of
app crashes, affecting over 75% of the projects (cf. Section 3).
Thus, we focus on analyzing framework exceptions, and
also brief the other two exception types (cf. Section 3.1).

1.2 Challenges
We face three key challenges in this study. (1) The first

is the lack of comprehensive dataset. To enable crash analysis,
we need a comprehensive set of crashes from many apps.
Ideally, each crash is associated with the exception trace, the
buggy code version, the bug-triggering test, and the patch
(if exists). However, to our knowledge, no such dataset
exists. Despite open-source project hosting platforms (e.g.,
GitHub and Google Code) maintain issue repositories, we
find only a small set of crash issues (∼16%) are accompanied
with exception traces. Among them, only a small fraction
has clear reproduction steps (with target app versions and
environment); even if the issue is closed, the faulty code
version may not be linked with the fixed one. (2) The sec-
ond concerns difficulties in crash analysis. Analyzing crashes
requires deep knowledge of app logic, Android framework,
and even third-party libraries. However, no reliable tool
exists that can help our analysis. As a result, the crash
analysis requires considerable human expertise and efforts.
(3) The third is the validation of analysis results and findings. To
reduce the threats to validity, we need to consider diverse
categories/types of apps, and cross-check our findings by
referring to the developers’ expertise and experience.

To achieve this study, we made substantial efforts in
several aspects. Fig. 1 shows the overview of our study.

1.3 Data Collection and Online Survey
We collected 16,245 unique exception traces from 2,486

open-source (F-Droid) apps as our analysis data (see
Fig. 1(a)) by (1) mining the issue repositories; and (2) apply-
ing the three state-of-the-art app testing tools (Monkey [28],
Sapienz [11], and Stoat [12]). We also run the three test-
ing tools on 3,230 Google Play apps, and collected 8,760
unique exception traces, to complement our analysis data.
Moreover, we conducted an online survey, and received
135 app developers’ responses about how they analyze,
test, reproduce and fix exception bugs to cross-validate our
analysis results and gain more insights (see Fig. 1(b)).

1.4 Crash Analysis
We aim to answer the following research questions.

• RQ1 (Exception Characteristics): What are the characteris-
tics of these exceptions, e.g., exception categories, distributions,
and locations of manifestation?

• RQ2 (Root Causes): What are the root causes of framework
exceptions? What are the difficulties app developers face when
analyzing them?

• RQ3 (Exception Detection): What tools are commonly used
by developers to detect exception bugs? Are they satisfactory?

• RQ4 (Auditing Tools): How effective is the state-of-the-art bug
detection techniques in manifesting framework exceptions?

1. For brevity, we use framework exception to indicate framework-specific
exception, which can be any exception thrown from Android framework.

• RQ5 (Exception Reproduction): How is the reproducibility of
app exception bugs? Are there any difficulties of reproducing?

• RQ6 (Exception Fixing): How do developers fix framework
exceptions? Are there any difficulties app developers face?

Through these questions, we find framework exceptions
account for the majority in both open-source and commer-
cial apps. They have lower issue closing rate2 (only 53%),
compared with application exceptions (67%). Through care-
ful analysis, we distilled 11 common fault categories, which
have not been well-investigated before (cf. Section 3.2).

Informed by the developer survey, we further audited
existing automated bug detection tools on framework ex-
ceptions (cf. Section 3.4). We find dynamic testing tools can
reveal framework exceptions, but are still less effective on
certain fault categories. Their testing strategies have a big
impact on the detection ability. In addition, these testing
tools have low reproducing rates (cf. Section 3.5). We also
find most exceptions can be fixed by five common practices
with small patches (fewer than 20 code lines), but develop-
ers face several difficulties in fixing (cf. Section 3.6).

1.5 Applications
Based on our study, we made several applications: (1) We

constructed DroidDefects, the first comprehensive and largest
benchmark of Android app exception bugs. It contains 33
reproducible and 3,696 ground-truth exception bugs, and
covers diverse exception types, root causes, app complexi-
ties and categories, and relevant bug information. It can help
follow-up research, e.g., bug understanding, detection, local-
ization, prediction, and patch generation for Android apps.
(2) We optimized Stoat3, a GUI testing tool, by integrating
a number of testing strategies, which quickly revealed three
previously unknown bugs in Gmail and Google+. (3) We
built ExLocator4, an exception localization tool, which can
help localize the root causes of specific exception types. (4)
We also demonstrated the possibility of enhancing static
checking and mutation testing for Android apps.

1.6 Contributions
To summarize, we made the following contributions:

• We conducted the first large-scale study to investigate
exception bugs (framework exceptions in particular) of
Android apps, and identified 11 common fault categories.
The results provide useful insights for both researchers
and developers.

• Our study evaluated the state-of-the-art bug detection
techniques, reviewed the reproducibility of these excep-
tions, and investigated common fixing practices. The find-
ings motivate more effective bug detection, reproduction,
and fixing techniques.

• We conducted an online survey to understand how devel-
opers analyze, test, reproduce and fix crashes. This survey
gains more insights from the developers’ experiences, and
also validates our analysis results.

• We constructed DroidDefects, the first comprehensive and
largest benchmark of Android app exceptions, to enable
follow-up research. We built two prototype tools Stoat+

2. The percentage of how many issues has been closed by developers.
3. Stoat is available at https://github.com/tingsu/stoat.
4. Exlocator is available at https://github.com/crashanalysis/ExLocator.

https://github.com/tingsu/stoat
https://github.com/crashanalysis/ExLocator

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 3

Apks

Projects

Testing

crash issues &
comments

Crash
reports

Crawling

RQ1

RQ3

RQ2

(c) Crash Analysis (d) Applications

Exception
Characteristics

Analysis

Android doc.
& Java spec. Source code

RQ4

Fixing
patches

+

Stoat+

Google
Play

F-Droid

Root Cause
Analysis

Exception
Reproducing

Analysis

Auditing Exception
Detection Tools

Exception Fixing
Analysis

RQ5

TSE

Exception Detection
Analysis

RQ6

(b) Online Developer Survey

Faulty app

Reproducible tests

Exception trace

Root cause

DroidDefect

Benchmark

Prototype tools

Lessons Learned

ExLocator(a) Data Collection

Static tools

Fig. 1: Overview of our study

and Exlocator to improve bug detection and debugging,
and summarized several lessons learned.
In our prior work [29], we investigated framework-

specific exceptions in Android apps. In this journal version,
we have made substantial extensions: (1) We additionally
analyzed 8,760 exception bugs from 3,230 commercial apps
from Google Play. It provided more observations on the
characteristics of exception bugs, and validated the gen-
erability of our conclusion (Section 2.2 and 3.1). (2) We
conducted an online survey among 135 Android app devel-
opers. It provided more insights from the developers’ expe-
riences and complemented our analysis results (Section 2.3,
Section 3.1∼3.6 (RQ1∼RQ6)). (3) We revisited our research
questions (i.e., RQ1, RQ2, RQ4 and RQ6) in depth and ana-
lyzed together with the results from the online survey. For
example, we additionally investigated the difficulties the
developers face when analyzing root causes, the common
fix practices, and the reasons of library exceptions, etc. (4)
We additionally studied two new research questions, i.e.,
the testing practices of exception bugs by developers (RQ3
in Section 3.3), and the reproducibility of exception bugs
from the perspectives of both developers and testing tools
(RQ5 in Section 3.5). It reveals the unsatisfactory points of
existing testing tools, and the challenges that app developers
and state-of-the-art tools face in reproducing exceptions,
which have not yet been explored before. (5) We constructed
the benchmark repository DroidDefects. It now contains 33
reproducible and 3,696 ground-truth exception bugs and the
utility program for facilitating other research work. For each
bug, we provided the faulty code version, the reproducible
test, the exception trace and the explanation of root cause.
DroidDefects can serve follow-up research work (Section 4).
(6) We further illustrated more application domains of our
study. We also extended our analysis on the empirical study
and analysis results, and concluded with several lessons
learned that were not identified before (Section 5 and 6).
Importantly, our dataset, benchmark and tools were made
publicly available at https://github.com/tingsu/droiddefects.

2 PRELIMINARY AND STUDY PREPARATION

2.1 Android Exception Model
The architecture of Android platform is composed of

four layers, i.e., application, framework, library and Linux
kernel. Android apps run at the application layer. The
Android framework APIs form the building blocks of apps.

java.lang.RuntimeException: Unable to resume activity {*}:
java.lang.NumberFormatException: Invalid double: “”

at android.app.ActivityThread.performResumeActivity(…)
….

Caused by: java.lang.NumberFormatException: Invalid double:“”
at java.lang.StringToReal.invalidReal(StringToReal.java:63)
at java.lang.StringToReal.parseDouble(StringToReal.java:248)
….

Fig. 2: An example of RuntimeException trace

To provide different functionalities and services, Android
reuses a number of libraries (e.g., Apache, SSL, OpenGL).
When an app crashes, a (Java) exception will be thrown from
one of these three layers, which corresponds to application,
framework or library exception.

Android apps (implemented in Java) inherit the excep-
tion model of Java, which has three kinds of exceptions. (1)
RuntimeException, the exceptions that are thrown during
the normal operation of the Java Virtual Machine when the
program violates the semantic constraints (e.g., null-pointer
dereferences, divided-by-zero errors). (2) Error, which repre-
sents serious problems that a reasonable application should
not try to catch (e.g., OutOfMemoryError). (3) Checked Ex-
ception (all exceptions except (1) and (2)), these exceptions
are required to be declared in a method or constructor’s
throws clause (statically checked by compilers), and indicate
the conditions that a reasonable client program might want
to catch. The programmers are responsible to handle Run-
timeException and Error by themselves at runtime.

Fig. 2 shows an example of RuntimeException. The
bottom part represents the root exception, i.e., NumberFor-
matException, which indicates the root cause. Java uses
exception wrapping, i.e., one exception is caught and wrapped
in another to propagate exceptions. In this case, Runtime-
Exception in the top part wraps NumberFormatException.
Note that the root exception can be wrapped by multiple
exceptions, and the flow from the bottom to the top denotes
the order of exception wrappings. An exception signaler, the
first called method under the root exception declaration
(e.g., invalidReal in this case), is the method that throws
the exception. To classify each exception, we referred to
Android documentation [30] (API level 18) and the heuristic
rules defined by prior work (Table II in [31]) according to
the signaler’s origin: (1) Application Exception: the signaler
is defined in the application code. We can recognize it by
the application’s package name. (2) Framework Exception:

https://github.com/tingsu/droiddefects

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 4

the signaler is defined in the Android framework, i.e.,
from these packages: “android.*”, “com.android.*”, “java.*”,
and “javax.*”. (3) Library Exception: the signaler is defined
in the libcore in Android framework (e.g., “org.apache.*”,
“org.json.*”, “org.w3c.*”) or third-party libraries used by
the app. Note that, in this study, we do not consider native
crashes caused by C++ exceptions, and do not consider Java
exceptions caused by the bugs of Android framework itself.

2.2 Data Collection
2.2.1 App Subjects

We collected our app subjects from F-Droid [32] and
Google Play Store [33]. We chose F-Droid due to three
reasons. First, it is the largest repository of open-source An-
droid apps. At the time of our study, it contains over 2,104
unique apps and 4,560 different releases (each app has 1∼3
recent releases), and maintains their metadata (e.g., project
addresses, history versions). Second, the apps have diverse
categories (e.g., Internet, Personal, Tools), covering different
maturity levels of developers, which are the representatives
of real-world apps. Third, all apps are hosted on GitHub,
Google Code, SourceForge, etc, which makes it possible to
access their source code and issue repositories. Additionally,
we randomly selected 3,230 closed-source apps from Google
Play, Google’s Android app market, which has millions of
commercial apps with diverse categories. We uniformly se-
lected these apps from the top ten categories (e.g., Education,
Lifestyle, Business, Tools) [1], and each app has at least one
million installations. These apps could be regarded as the
representatives of commercial apps.

2.2.2 Exception Trace Collection

Table 1 summarizes the statistics of collected exception
traces from hosting platforms (GitHub and Google Code)
and testing tools. We applied testing tools on both F-Droid
apps and Google Play apps to collect exceptions.
Issue Repositories. We collected exception traces from
GitHub and Google Code since they host over 85%
(2,174/2,549) F-Droid apps. To automate data collection,
we implemented a web crawler to automatically crawl the
issue repositories of these apps, and collected the issues that
contain exception traces. In detail, the crawler visits each
issue and its comments to extract valid exception traces.
Additionally, it utilizes GitHub and Google Code APIs to
collect project information such as package name, issue id,
number of comments, open/closed time. We took about two
weeks and successfully scanned 272,629 issues from 2,174
apps, and finally mined 7,764 valid exception traces (6,588
unique) from 583 apps.
Automated GUI Testing Tools. To test F-Droid apps (4,560
recent release versions of 2,104 apps) and Google Play apps
(3,230 apps), we chose three state-of-the-art Android app
testing tools with different strategies: Monkey [28] (random
testing), Sapienz [11] (search-based testing), and Stoat [12]
(model-based testing). Each tool is configured with default
settings and each app is given 3 hours to thoroughly test
on a single Android emulator. Each emulator is configured
with Jelly Bean Android OS (SDK 4.3.1, API level 18). The
evaluation is deployed on three physical machines (64-
bit Ubuntu/Linux 14.04). Each machine runs 10 emulators
in parallel. Since Sapienz and Stoat leverage code cover-

age to optimize test generation, we instrumented apps by
Emma [34] or Jacoco [35] to collect coverage data.

This data collection phase took 6 months in total, and
we finally detected 13,271 crashes (9,722 unique) for open-
source apps, and 293,266 crashes (13,764 unique) for com-
mercial apps. During testing, when an app crashes, the
exception trace with bug-triggering inputs, screenshots, de-
tection time, etc, are recorded to help our analysis.

Notably, for F-Droid apps, we find that the issue reposi-
tories of GitHub and Google Code only contain 545 unique
crashes that were reported with stack traces, for the 4,560
recent release versions. These crashes only accounts for 5.6%
of those detected by testing tools. This indicates these excep-
tion traces collected by testing tools can indeed effectively
complement the mined exceptions.

2.2.3 Other Resource Collection
To help analysis, we also collected the most relevant

posts with the most votes on Stack Overflow by searching
key words with “Android”, exception types and exception
messages. We recorded the creation time, number of votes,
number of answers, summary, etc. Finally, we mined 15,678
posts of various exceptions.

2.3 Online App Developer Survey
2.3.1 Questionnaire Design

To gain more understanding and validate our own anal-
ysis results on exception bugs, we conducted an online app
developer survey. This survey aims to solicit Android app
developers to share their experience of analyzing, testing,
reproducing and fixing exception bugs. Table 2 presents
the questionnaire of our study, which includes Q1∼Q17.
Specifically, the survey is designed as two parts.
Part I: Background Information. We collected the back-
ground information of developers via Q1∼Q4. By these
questions, we can filter invalid developers (e.g., the survey
only proceeds if the developer is aware of app exceptions),
and get the survey results of different developer groups
(e.g., groups of developers with different experience levels,
different app categories and countries).
Part II: App Exception Experiences and Practices. We
collected developers’ experiences and practices information
via Q5∼Q17. We initially designed a number of questions
according to our research questions RQ1∼RQ6, and sent
them to three experienced Android app developers (with
5-year+ development experience) from Google, Tecent and
Alibaba, respectively, for early feedback. We later refined
these questions several rounds, and come up with Q5∼Q17.
This design process aims to make the questions intuitive
to developers and concentrate on those questions that both
developers and researchers really concern.

For the developers who are aware of app exceptions,
we provided three examples for each exception category to
make sure the developers can fully understand the survey’s
purpose and related terminologies. Then, we presented
Q5∼Q17 to systematically understand the developers’ prac-
tices from different perspectives. Specifically, we collected
information about (1) whether developers have encoun-
tered the three exception categories via Q5 and Q6 (cf.
Section 3.1.1), (2) how developers understand framework
exceptions via Q7∼Q9 (cf. Section 3.2.3), (3) how developers

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 5

TABLE 1: Statistics of collected crashes (“M.”: Monkey;
“Sa.”: Sapienz; “St.”: Stoat).

Sources #Projects #Crashes #Unique Crashes
Platforms

(GitHub/Google Code)
2,174

(2,035/137)
7,764

(7,660/104)
6,588

(6,494/94)
F-Droid

(M./Sa./St.)
2,104

(4,560 versions)
13,271

(3,758/4,691/4,822)
9,722

(3,086/4,009/3,535)
Google Play
(M./Sa./St.) 3,230 293,266

(169,869/58,551/64,846)
13,764

(5,634/3,839/4,291)
Total 5,716 (1,792 overlap) 314,301 30,009

detect these exceptions in practice via Q10∼Q12 (cf. Sec-
tion 3.3), (4) how developers reproduce these exceptions via
Q13∼Q15 (cf. Section 3.5), and (5) how developers fix these
exceptions via Q16∼Q17 (cf. Section 3.6). In particular, some
questions (e.g., Q5, Q6, Q7, Q16) aim to validate our analysis
results; some questions (e.g., Q9, Q12, Q13, Q14, Q15, Q17)
aim to understand developers’ experiences and practices;
some questions (e.g., Q7, Q9, Q12, Q14) are given with some
options (summarized and refined according to our research
experience and discussions with three senior developers),
and an “Others” option to allow any additional comments.

2.3.2 Participants

To get sufficient number of responses from developers,
we solicited the participants from three channels. First, we
contacted 4,428 open-source app developers from GitHub
and 1,226 commercial app developers from Google Play by
scrawling their emails. Second, we invited the app develop-
ers in industry to distribute the survey within their compa-
nies and networks. These contacts are from Google, Tencent,
Huawei, Alibaba and other IT companies. Third, we re-
cruited app developers from Amazon Mechanical Turk [36]
to participate in our survey. We paid 1.5 USD payment for
each approved submission. Finally, we received valid re-
sponses from 135 professional app developers. Specifically,
These developers come from 32 different countries across
four different continents (Asia, Europe, North America,
Oceania), and develop a diverse categories of apps (22
different categories). Among them, Business, Tools, Education,
Lifestyle, Entertainment are the most popular categories. 10
developers are also involved in banking, insurance, financial
apps, which emphasize more on robustness and safety.
Among these 135 participants, 25 developers (18.5%) have
less than 1-year experience, 67 developers (49.6%) have 1∼3
years’ experience, 35 developers (25.9%) have 3∼6 years’
experience, and 8 developers (6.0%) have more than 6 years’
experience. Most of the developers, i.e., 100 participants
(81.5%) have more than 1-year development experience.

3 EMPIRICAL STUDY

3.1 RQ1: Characteristics of Exceptions

3.1.1 Exception Category and Distribution

Based on the data collected in Section 2.2, Table 3 lists
the exception categories of open-source and closed-source
apps, and shows the number of the affected projects, occur-
rences, number of exception types and issue closing rate.
Since Google Play apps do not have publicly available issue
repositories, we only collected the closing rate for F-Droid
apps. We can see two facts: (1) Framework exceptions are
more pervasive and affect most of the apps. For exam-
ple, 75.3% of open-source apps (revealed by the data of
GitHub & Google Code) and 84.5% of closed-source apps
(revealed by the data of testing tools) suffer from framework

TABLE 2: Survey questionnaire of our study
ID Question Options/Types

Part I: Background Information

Q1 Experience in years as an Android developer/tester?
(<1 / 1∼3 / 3∼6 / >6 years)

Q2 Working place?
(country, company/institution)

Q3 App category developed?
(e.g., Education, Lifestyle, Business, Entertainment)

Q4 Awareness of Android app exceptions?
(Yes/No)

Part II: App Exception Experiences and Practices

Q5 Ever encountered all the three exception categories?
(Yes/No)

Q6 Pervasiveness of framework-specific exceptions?
(< 10%, 10%∼30%, 30%∼50%, 50%∼70%, > 70%)

Q7 Ever encountered root causes of app exceptions?
(the 11 fault taxonomies, and “Others”)

Q8 How difficulty of understanding each root cause?
(Difficult / Medium / Easy)

Q9 Main difficulties of diagnosing root causes?
(e.g., reproduction steps, bug environment, and “Others”)

Q10 Importance of resolving exceptions before release?
(Very important/Important/Normal/Not important/Ignored)

Q11 Tools/Platforms to reveal app exception bugs?
(e.g., Monkey, UIAutomator, Lint, R&R tools)

Q12 Unsatisfactory points of existing testing tools?
(e.g., manual efforts, false alarms, inefficiency, and “Others”)

Q13 Failure rate of reproducing exception bugs given reproducing steps?
(< 10% / 10%∼30% / 30%∼50% / >50%)

Q14 Reasons affecting the reproducibility?
(e.g., concurrency, device models, system settings, and “Others”)

Q15 Pratices/Tools for improving reproducibility?
(open question)

Q16 Popularity of common fix practices?
(the 5 common fix practices found by our study)

Q17 Fix rate with only an exception trace?
(< 10%, 10%∼30% / 30%∼50% / 50%∼70% / >70%)

exceptions. In terms of exception occurrences, framework
exceptions occupy more than half of all exceptions (50.8%
for open-source apps revealed by GitHub/Google Code
data, 74.1% for closed-source apps revealed by testing tools).
This observation also conforms to the results of our survey
question Q5 and Q6: 108 developers (80%), report they
have encountered framework exceptions, and 88 developers
(57.8%) report, in their experience, framework exception
occupies around 30%∼50% (reported by 35 developers) and
50%∼70% (reported by 43 developers) among the three
exception categories. (2) The closing rate of framework
exceptions is 53%, which is relatively lower than those of the
others (67% for application and 57% for library exception).

3.1.2 Locations of Framework Exception Manifestation

To understand framework exceptions, we grouped them
by the class names of their signalers. In this way, we got
more than 110 groups. To distill our findings, we further
grouped these classes into 17 modules by following the
insights of popular Android development tutorials [37],
[38]. In our context, the classes in one module achieve either
one general purpose or stand-alone functionality from de-
velopers’ perspective. For example, we grouped the classes
that manage the Android application model (e.g., Activi-
ties, Services) into App Management (corresponding to an-
droid.app.*); the classes that manage app data from content
provider and SQLite into Database (android.database.*); the
classes that provide basic OS services, message passing and
inter-process communication into OS (android.os.*). Other
modules include Widget (UI widgets), Graphics (graphics
tools that handle UI drawing), Fragment (one special visual
element), WindowsManager (manage window display), etc.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 6

TABLE 3: Statistics of the exceptions crawled from GitHub & Google Code and collected by testing tools on F-Droid and
Google Play apps (classified into Application Exception, Framework Exception, and Library Exception, respectively).

Source Exception Category #Projects Occurences #Types Closing Rate
Application 268 (45.8%) 1552 (23.6%) 88 (34%) 67%

F-Droid (GitHub & Google Code) Framework 441 (75.3%) 3,350 (50.8%) 127 (50%) 53%
Library 253 (43.2%) 1,686 (25.6%) 132 (52%) 57%
Application 1,869 (50.9%) 4,017 (41.3%) 35 (35.0%) -

F-Droid (Testing tools) Framework 2,400(65.3%) 5,072 (52.2%) 62 (62.0%) -
Library 366 (10.0%) 633 (6.5%) 44 (44.0%) -
Application 389 (23.4%) 1,199 (14.4%) 20 (27.8%) -

Google Play (Testing tools) Framework 1,405 (84.5%) 6,205 (74.1%) 44 (61.1%) -
Library 402 (24.2%) 965 (11.5%) 40 (55.6%) -

21
61

86
104
104

156
188
193

283
327

367
371

434
600
604

963
1245

0 200 400 600 800 1000 1200 1400

Webview
Hardware

IO
Media
Dalvik

Resource M.
View

Thread
Window M.

Runtime
Fragment
Graphics

OS
Network

Widget
Database

App M.

Unique exception instances

Fig. 3: Exception-proneness of Android framework modules
in terms of unique instances (M. = Management)

Fig. 3 shows the exception-proneness5 of Android frame-
work modules in terms of unique exception instances. We
find App Management, Database and Widget are the top 3
exception-prone modules. In App Management, the most
common exceptions are ActivityNotFound (due to no ac-
tivity is found to handle a given intent) and IllegalArgu-
ment exceptions (due to improper registering/unregistering
Broadcast Receiver in the activity’s callbacks). Surprisingly,
although Activity, Broadcast Receiver and Service are the
basic building blocks of apps, developers make the most
number of mistakes on them.

As for Database, CursorIndexOutOfBounds, SQLiteEx-
ception, SQLiteDatabaseLocked account for the majority,
which reflect the various mistakes of using SQLite, the
default database of Android. As for the other modules, we
find: (1) improper use of ListView with Adapter throws a
large number of IllegalState exception (account for 47%)
in Widget; (2) In OS, SecurityException, IllegalArgument,
NullPointer are the most common ones. (3) improper use
of Bitmap causes OutOfMemoryError (48%) in Graphics; (4)
improper handling callbacks of Fragment brings IllegalState
(85%) in Fragment; improper showing or dismissing dialogs
triggers BadTokens (25%) in WindowManager.

3.1.3 Locations of Library Exception Manifestation
To investigate the library exception, we used the excep-

tion data collected in Table 3. We grouped these exceptions
by the class names of their signalers, and integrated the
exceptions that are thrown from the same library. We finally
got 100+ exception-prone libraries. Fig. 4 shows the top 15 li-
braries in terms of number of unique exception occurrences.

5. In our context, exception-proneness indicates how often develop-
ers may misuse specific framework or library functionalities, and does
not indicate the correctness of Android framework or libraries them-
selves. Specifically, these misuses manifest themselves as exceptions.

#unique exception instances

266
155

87
56

40
33

29
26
23
23
23
20
20
19

15

libcore
org.apache

org.json
com.google.android
org.whispersystems

com.nextgis.maplibui
org.kxml2

org.eclipse
com.google.protobuf

com.stericson.RootTools
org.jivesoftware.smack

com.squareup.okhttp
com.google.android.gms

okhttp3
com.facebook

0 50 100 150 200 250 300

Highcharts Cloud https://cloud.highcharts.com/create?q=ErzjxpSXq

1 of 1 12/21/18, 13:55

Fig. 4: Top 15 exception-prone libraries in terms of unique
instances based on the data in Table 3.

We find libcore, org.apache, and org.json are the three most
exception-prone libraries, which are in fact the most basic
ones and more frequently used than the others.

We further randomly selected 10 library exceptions from
each of these top 15 libraries, and analyzed the root causes.
We find that although these libraries provide different func-
tionalities, their exceptions still have some common root
causes. For example, most of exceptions are due to the mis-
use of APIs, e.g., giving incorrect parameter values/formats,
failing to validate specific resources (e.g., network) before
use. Some exceptions are caused by the API incompati-
bility issues [39] between the Android SDK/app and the
library version, lack of specific hardware support or per-
missions [40]. Only a small portion of exceptions are due to
the bugs of libraries themselves. These observations reveal
that library exceptions do share similarity with framework
exceptions (detailed in Section 3.2) in terms of common root
causes. The Android framework can be actually viewed as
a basic “library” that forms the building blocks of Android
apps. In this paper, we focus on investigating framework ex-
ceptions. Different apps may use different libraries. Thus,
giving a thorough analysis of library exceptions is not
possible in this work alone. Thus, we leave it as future
work. We have not given the manifestation locations of
application exceptions, since these exceptions can be thrown
from arbitrary locations at the app code level. We inspected
a number of application exceptions, but most of them were
generic programming errors. Thus, we do not give further
exploration on application exception in this study.

Answer to RQ1: Framework exceptions are more perva-
sive than the other two exception categories, among which
App Management, Database and Widget are the three most
exception-prone modules for developers. Library exceptions are
similar with framework exceptions in the terms of root causes.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 7

3.2 RQ2: Taxonomy of Framework Exceptions
This section characterizes the framework exceptions and

classifies them into different categories based on their root
causes. According to ISTQB [41], “Root cause is a source
of a defect such that if it is removed, the occurrence of the
defect type is decreased or removed.” Specifically, in our
context, we define root cause, from the view of developers,
is the initiating cause [42] of either a condition or a causal
chain that leads to a visible exception bug. Section 3.2.1
explains how we analyze and abstract these framework
exceptions into different categories. Section 3.2.2 illustrates
these categories with concrete examples.

3.2.1 Exception Analysis Method
First, we collected 8,243 framework exceptions and par-

titioned them into different exception buckets. Each bucket
contains the exceptions that share the similar root cause.
Specifically, we used the exception type, message and sig-
naler to approximate the root cause. We also removed app
specific information in the exception message to scale the
partition. For example, the exception in Fig. 2 is labeled
as (NumberFormatException, “invalid double”, invalidReal).
Here, we removed the empty string from the original excep-
tion message. We finally got 2,016 buckets, and the top 200
buckets contain over 80% of all exceptions. The remaining
buckets have only 5 exceptions or fewer in each of them.
Therefore, we focus on the top 200 buckets.

Second, we randomly selected a number of exceptions
from each bucket, and used three complementary resources
to facilitate root cause analysis: (1) Exception-Fix Repository.
We set up a repository that contains pairs of exceptions
and their fixes. In particular, (i) from 2,035 Android apps
hosted on GitHub, we mined 284 framework exception
issues that are closed with corresponding patches. To set
up this mapping, we checked each commit message by
identifying the keywords “fix”/“resolve”/“close” and the
issue id. (ii) We manually checked the remaining issues to
include valid ones that are missed by the keyword rules. We
finally got 194 valid issues. We investigated each exception
trace and its patch to understand the root causes. (2) Excep-
tion Instances Repository. From the 9,722 exceptions detected
by testing tools (see Table 3), we filtered out framework
exceptions, and linked each of them with its exception trace,
source code, bug-triggering inputs and screenshots. When
an exception type under analysis is not included or has very
few instances in the exception-fix repository, we referred
to this repository to facilitate analysis by using available
reproducing information. (3) Technical Posts. For each ex-
ception type, we referred to the posts from Stack Overflow
collected in Section 2.2.3 when needing more information
from developers and validating our understanding.

Finally, we analyzed 86 distinct exception types, which
covers 84.6% of all framework exceptions6, and distilled
11 common fault categories. Specially, we abstracted the
common faults by the three steps. First, we read the official
Android documentation and popular developer tutorials to
identify and understand Android’s important mechanisms

6. We found 13.2% of all exceptions are NullPointerException, which
are caused by null pointer dereferences and highly related to the spe-
cific logic of each app. Thus, we did not inspect this generic exception
type in our analysis.

class DataRetrieverTask extends AsyncTask<String, ...> {
private BankEditActivity context;
protected Void doInBackground(final String... args) {
... //update bank info via the remote server

}
protected void onPostExecute(final Void unused) {
... //show the update progress
AlertDialog.Builder builder = new AlertDialog.Builder(context);
... //set dialog message
AlertDialog alert = builder.create();

+ if(!context.isFinishing()) {
alert.show();

+ }
}}

Fig. 5: Bankdroid Issue #471 (Simplified)

(e.g., activity lifecyle, single-GUI-thread model), compo-
nents (e.g., activity, service, thread, database), and features
(e.g., XML-based UI design, API compatibility). Second,
we inspected each exception bug to understand its own
root cause by using the resources stated above. Third, we
abstracted the root cause into which mechanism it violates,
or which component or feature it fails in. By these informa-
tion, we classified an exception into one specific fault cate-
gory, which is named after specific mechanism errors (i.e.,
Component Lifecycle Error, UI Update Error, Framework
Constraint Error), component usage errors (i.e., Concurrency
Error, Database Management Error), feature errors (i.e., API
Updates and Compatibility, Memory/Hardware Error, XML
Design Error) or generic errors (Resource Not Found Error,
API Parameter Error, Indexing Error).

3.2.2 Taxonomy

• Component Lifecycle Error. Each Android component has
its own lifecycle and is required to follow the prescribed
lifecycle paradigm, which defines how the component is
created, used and destroyed [43]. For example, Activity pro-
vides six core callbacks to allow developers to be aware of its
current state. If developers improperly handle the callbacks
or miss state-checking before some tasks, the app can be
fragile considering the complex environment interplay (e.g.,
device rotation, network interruption). Bankdroid [44] (Fig. 5)
is a Swedish banking app. It utilizes a background thread
DataRetrieverTask to perform data retrieval, and pops up
a dialog to inform that the task is finished. However, if
the user presses the back button on BankEditActivity (which
starts DataRetrieverTask), the app will crash when it tries
to pop up a dialog. The reason is that the developers
fail to check BankEditActivity’s state (in this case, destroyed)
after the background task is finished. The bug triggers a
BadTokenException and was fixed in revision 8b31cd3 [45].
Besides, Fragment [46], a reusable class implementing a
portion of Activity, has much more complex lifecycle. It
provides 12 core callbacks to manage its state transition,
which makes lifecycle management more challenging, e.g.,
state loss of Fragments, attachment loss from its activity.
• UI Update Error. Android enforces the single GUI thread
model. A UI thread is in charge of dispatching events and
rendering user interface. Each app owns one UI thread
and should offload intensive tasks to background threads
to ensure responsiveness. cgeo [47] (Fig. 6) is a popular
full-featured client for geocaching. When refreshing cache-
List (cacheList is associated with a ListView via an Ar-
rayAdapter), the developers query the database and substi-
tute this list with new results (via clear() and addAll()) in
doInbackground. However, the app crashes when it tries to

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 8

private List<Geocache> cacheList = new ArrayList<>();
private CacheListAdapter adapter =

... // adapter binds cacheList and ListView
new AsyncTask<Void, Void, Void>() {
protected Void doInBackground(final Void... params){

//run in the background thread
final Set<Geocache> cacheListTmp = ... //query database

- if (CollectionUtils.isNotEmpty(cacheListTmp)){
- cacheList.clear();
- cacheList.addAll(cacheListTmp);
- }

}}

Fig. 6: cgeo Issue #4569 (Simplified)

public class GSMService extends LocationBackendService{
protected Thread worker = null;
... //start the service
worker = new Thread() {

public void run() {
+ Looper.prepare();

final PhoneStateListener listener =
new PhoneStateListener() {
... //callbacks to monitor phone state change

};
}
worker.start();

}

Fig. 7: Local-GSM-Backend Issue #2 (Simplified)

refresh the list. Because cacheList is maintained by the UI
thread, which internally checks the equality of item counts
between ListView and cacheList. But when a background
thread modifies cacheList, the checking will fail and an
exception will be thrown. The developer fixed it by moving
the refreshing operations into onPostExecute, which instead
runs in the UI thread (in revision d6b4e4d [48]).
• Framework Constraint Error. Android defines a number
of constrains when using its framework to build an app.
For example, Each Handler [49] instance must be associated
with a single thread and the message queue of this thread [50].
Otherwise, a runtime exception will be thrown. Local-GSM-
Backend [51] (Fig. 7), a popular cell-tower based location
lookup app, uses a thread worker to monitor the changes
of telephony states via PhoneStateListener. However, the
developers are unaware that PhoneStateListener internally
maintains a Handler instance to deliver messages [52],
which requires setting up a message loop in worker.
They later fixed it by calling Looper#prepare() (in revi-
sion 07e4a759 [53]). Other constraints include performance
consideration (avoid performing network operations in the
main UI thread [54], permission consideration (require run-
time permission grant for dangerous permissions [55] since
Android 6.0, otherwise SecurityException) and etc.
• Concurrency Error. Android provides a number of asyn-

public void onCreate(SQLiteDatabase db) {
... //create database tables
db.execSQL(CREATE_FRIENDS_TABLE);

}
public void onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion) {
// upgrade database
if (oldVersion < 5) { ... }
if (oldVersion < 6) {

- db.execSQL("create table temp_table as
select * from " + TABLE_FRIENDS);

- db.execSQL("drop table " + TABLE_FRIENDS);
+ db.execSQL(CREATE_FRIENDS_TABLE);

...
}}

Fig. 8: Atarashii Issue #82 (Simplified)

TABLE 4: Statistics of 11 common fault categories, sorted
by closing rate (collected from GitHub) in descending order
(“Occ.”: Occurrences, “S.O.”: Stack Overflow).

Category (Name for short) #Occ. #S.O.
posts

Closing
Rate

API Updates and Compatibility (API) 68 60 93.3%
XML Layout Error (XML) 122 246 93.2%
API Parameter Error (Parameter) 820 819 88.5%
Framework Constraint Error (Constraint) 383 1726 87.7%
Others (Java-specific errors) 249 4826 86.1%
Index Error (Index) 950 218 84.1%
Database Management Error (Database) 128 61 76.8%
Resource-Not-Found Error (Resource) 1303 7178 75.3%
UI Update Error (UI) 327 666 75.0%
Concurrency Error (Concurrency) 372 263 73.5%
Component Lifecycle Error (Lifecycle) 608 1065 58.8%
Memory/Hardware Error (Memory) 414 792 51.6%

chronous programming constructs, e.g., AsyncTask, Thread,
to concurrently execute intensive tasks. However, improper
handling them may cause data race [56] or resource
leak [57], and even app crashes. Nextcloud Notes [58], a
cloud-based notes-taking app, automatically synchronizes
local and remote notes. It attempts to re-open an already-
closed database, causing app crash [59]. The exception can
be reproduced by executing two steps repeatedly: (1) open
any note from the list; (2) close the note as quickly as
possible by pressing back-button. The app creates a new
NoteSyncTask every time when a note sync is requested,
which connects with the remote sever and updates the local
database by calling updateNote(). However, when there are
multiple update threads, such interleaving may happen and
crash the app: Thread A is executing the update, and Thread
B gets the reference of the database; Thread A closes the
database after the task is finished, and Thread B tries to
update the closed database. The developers fixed this ex-
ception in revision aa1a972 [60] by leaving the database un-
closed (since SQLiteDatabase already implemented thread-
safe database access mechanism).
• Database Management Error. Android uses SQLite as
its default database. Many errors are caused by improper
manipulating database columns/tables. Besides, improper
data migration for version updates is another major reason.
Atarashii [61] (Fig. 8) is a popular app for managing the
reading and watching of anime. When the user upgrades
from v1.2 to v1.3, the app crashes once started. The reason
is that the callback onCreate() is only called if no old version
database file exists, so the new database table friends is not
successfully created when upgrading. Instead, onUpgrade()
is called, it crashes the app because the table friends does not
exist (fixed in revision b311ec3 [62]).
• API Updates and Compatibility. Android features fast
API updates. For example, Service should be started explic-
itly since Android 5.0; the change of the comparison contract
of Collections#sort() [63] since JDK 7 crashes many apps
due to the developers are unaware of this. It also has device
fragmentation issues, which were already investigated by
prior work [64], [65]. For example, problematic deriver im-
plementation, non-compliant OS customization, and pecu-
liar hardware configuration may cause compatibility issues.
• Memory/Hardware Error. Android devices have limited
resources (e.g., memory). Improper using of resources may
cause app crashes. For example, OutOfMemoryError occurs
if loading too large Bitmaps; RuntimeException appears
when MediaRecorder#stop() is called without valid au-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 9

dio/video data received.
• XML Design Error. Android supports UI design and re-
source configuration in the form of XML files. Although IDE
tools have provided much convenience, mistakes still exist,
e.g., misspelling custom UI control names, forgetting to es-
cape special characters (e.g., “$”, “%”) in string texts, failing
to specify correct resources in colors.xml and strings.xml.
• Resource Not Found Error. Android apps heavily use
external resources (e.g., databases, files, sockets, third-party
apps and libraries) to accomplish tasks. Developers make
this mistake when they fail to check their availability.
• API Parameter Error. Developers make such mistakes
when they fail to consider all possible input contents or for-
mats, and feed malformed inputs as the parameters of APIs.
For example, they directly use the results from SharedPref-
erence or database queries without any checking.
• Indexing Error. Indexing error happens when developers
access data, e.g., database, string, and array, with a wrong
index value. One typical example is the CursorIndexOut-
OfBounds exception caused by accessing database with
incorrect cursor index.

3.2.3 Understanding Root Causes from Developers
To further validate the results of root cause analysis,

we surveyed the developers with three questions. In the
first question (Q7), we aimed to check the correctness and
completeness of root causes. We listed the 11 root causes
(accompanied with 2∼3 issue examples) that can cause
framework exceptions, and asked developers to choose any-
one that he or she has ever encountered. We also provided
an additional option “Others” for developers to fill in any
root causes we may have missed in our study. In the second
question (Q8), we aimed to understand how difficult the
developers may feel when resolving the exceptions with
these root causes (including the effort to inspect the excep-
tion message, understand the root case, and locate the faulty
code). We gave them the three options, i.e., Difficult, Medium,
and Easy, to rate each root cause. In the third question (Q9),
we aimed to understand the difficulties of diagnosing root
causes. We gave the four options, i.e., understand exception
type and message, get the reproduction steps (the user actions
to trigger the exception), get the bug environment (e.g., app
version, device info), understand the principles or usages of
specific Android APIs, and an additional option “Others”.

The responses of the first question support our root cause
analysis. All of the 11 root causes were encountered by the
developers. Specifically, Framework Constraint Error (en-
countered by 62 developers (45.9% of all developers)), API
Updates and Compatibility Error (60 developers (44.4%)),
Lifecyle Error (53 developers (39.3%)), UI Update Error (53
developers (39.3%)) are the four most commonly encoun-
tered errors reported by developers. This finding conforms
to our analysis results. In Table 4, “#Occ.” denotes the
exception occurrences of each root cause among the 8,243
framework exceptions. We can see, besides those “trivial”
errors such as Resource-Not-Found Error, Index Error and
API Parameter Error, app developers are indeed more likely
to make Android specific errors, e.g., Lifecycle Error, Mem-
ory/Hardware Error, Framework Constraint Error. Some
developers also mentioned some exception instances in the
“Others” option. For example, one developer mentioned

96

72

57

45

Get reproduction steps

Get bug environment

Understand exception
type/message

Understand API usages

0 20 40 60 80 100 120

Highcharts Cloud https://cloud.highcharts.com/create?q=ErzjxpSXq

1 of 1 12/24/18, 19:19

Fig. 9: Difficulties of root cause analysis

improperly using of Android APIs, which was categorized
into the API Parameter Error category; another developer
mentioned not properly handling the state of the listeners for sen-
sors, which was categorized into the Framework Constraint
Error. Additionally, 42 developers (31.1% of all developers)
mentioned Android system errors (i.e., the bugs of Android
framework itself) can also lead to framework exceptions,
which is indeed true but out of our scope.

In the second question, we find developers have dif-
ferent assessments on the difficulties of these root causes
according to their experience. Resource-Not-Found Error,
API Parameter Error, Index Error, and XML Error were the
top four most Easy errors rated by 50.4%, 48.1%, 44.4%, 43%
of all developers, respectively, since these errors are usually
induced by trivial human mistakes and easy to fix. On the
other hand, Memory/Hardware Error, Concurrency Error,
and API Updates and Compatibility Error were the top
three most Difficult errors rated by 46.7%, 34.8%, 29.6% de-
velopers, respectively, because these errors are notoriously
difficult to debug [56], [66]. As for Database Management
Error, UI Update Error, Framework Constraint Error, Life-
cycle Error, almost half of participants, i.e., 51.8%, 48.1%,
46.7%, and 46.7% of all developers, respectively, rated them
as Medium. This finding also conforms to our observation on
Stack Overflow. In Table 4, “#S.O. posts” counts the number
of Stack Overflow posts on discussing these faults. We can
see developers indeed discuss more on Android Framework
Constraint Error and Lifecycle Error.

Fig. 9 shows the responses for Q9. We can see 96 develop-
ers (71.1% of all developers) reached the consensus that the
most difficult point is to get the reproduction steps, which is
quite crucial for diagnosing the root cause. The second diffi-
cult point, mentioned by 72 developers (53.3%), is to get the
bug environment. 57 developers (42.2%) confirmed the ex-
ception type and message sometimes also bring confusions,
while 45 developers (33.3%) reported some specific Android
APIs usages or features also affect the understanding of root
causes. We received 5 answers from the “Others” option, but
all of them can be grouped into the previous four difficulties
due to similarity. Thus, we believe these four difficulties are
the most typical ones.

Answer to RQ2: We distilled 11 fault categories of frame-
work exceptions. Developers make more mistakes on Lifecycle
Error, Memory/Hardware Error and Framework Constraint
Error. Developers feel it difficult to resolve Concurrency Error,
Memory/Hardware Error, and API Updates and Compatibility
Error. Getting reproduction steps and bug environment are the
two most difficult problems when diagnosing root causes.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 10

86
45

32
30
29

26
25
25
25

19
18

14
11

7
5

Manual Testing
Android Lint

Cloud-based testing
Monkey

UIAutomator
Espresso
Findbugs

Appium
MonkeyRunner

Roboelectic
Robotium

Record-Replay tools
SonarQube

PMD
GUI ripping tools

0 20 40 60 80 100

Highcharts Cloud https://cloud.highcharts.com/create?q=ErzjxpSXq

1 of 1 12/24/18, 19:22

Fig. 10: Tools/Frameworks used by developers

3.3 RQ3: Detecting Exception Bugs
This section investigates the testing practices against

exception bugs from developers’ perspective. Different from
prior surveys [9], [10], [67] on how developers test Android
apps, our investigation focuses on how developers detect
these exception bugs that can lead to crashes. Specifically,
we aim to understand (1) the importance of detecting ex-
ception bugs, (2) the commonly-used tools to detect excep-
tion bugs, and (3) the unsatisfactory points of these tools.
This section motivates our deep investigation on these bug
detection tools in Section 3.4 (RQ4) and Section 3.5 (RQ5).

3.3.1 Tools for Detecting Exception Bugs
For the question Q10 “Do you think it is important to

detect (and resolve) exception bugs before releasing your apps?",
the responses were very consistent: 56.3% developers chose
Very Important, 34.8% developers chose Important, and 8.9%
developers chose Normal. This result indicates that detecting
exception bugs is indeed one of top priorities for developers.

In practice, many bug detection tools or frameworks are
available to help detect potential app exceptions. Fig. 10
shows the tools that are used by app developers to test
or check exception bugs (the responses of Q11). These
tools can be categorized into different groups by their
principles. For example, Monkey [28] is a random fuzzing
tool that tests apps by emitting a stream of random input
events; MonkeyRunner [68] is an API-based testing tool
that tests apps/devices from functional or framework level.
Other tools include unit/integration testing frameworks
(e.g., Roboelectic, Espresso, UIAutomator), script-based test-
ing frameworks (e.g., Robotium, Appium), R&R (record &
replay)-based tools, cloud-based testing service (e.g., Google
Firebase, Microsoft Xamarin) and static checking tools (e.g.,
Findbugs, Android Lint, PMD, SonarQube).

We can see manual testing is still the most preferable way
of 86 developers (63.7%) to find exception bugs. Android
Lint is the most commonly-used tool by 45 developers
(33.3%) to automatically scan app bugs, which is more pop-
ular than other static checking tools (i.e., FindBugs, PMD,
SonarQube). 74 developers (54.8%) preferred using Android-
JunitRunner-based unit and integration testing frameworks
(e.g., Espresso and UIAutomator), and 32 developers (23.7%)
resorted to cloud-based testing services (e.g., Google Fire-
base). We also notice only a few (5 developers) use au-
tomated GUI ripping tools. Sapienz [11] and Stoat [12],
the two state-of-the-art tools, were used. Different from all

the other tools, these GUI ripping tools are developed and
maintained by researchers to achieve automated app testing.

3.3.2 Unsatisfactory Points of Existing Tools
In the survey, we further asked the developers Q12

“which points do you think the tools you used are still not satis-
factory for detecting exception bugs?". From the responses, we
have several findings. (1) 67 developers (49.6%) complained
about the demanding human efforts required by manually
writing tests and setting up the testing environment. Man-
ual testing and those non-fully automatic testing methods
(e.g., MonkeyRunner, AndroidJunitRunner-based and script-
based testing frameworks and R&R tools) all need manual
efforts. (2) The inefficiency of uncovering exception bugs
is another major concern of 64 developers (43.7%). They
reported some tools either cost too much testing time (e.g.,
R&R tools) or miss bugs (e.g., Android Lint and other static
checking tools). (3) 56 developers (41.5%) complained that
even if the tool finds an exception, the generated test cannot
guarantee to reproduce the bug. This indicates the bug repro-
ducibility problem of mobile apps. Monkey and cloud-based
testing service are the two typical methods that have this
issue. For example, a Monkey test is a stream of low-level
events (based on the device screen coordinates), which may
probably fail to reproduce the bug if the screen size changes.
Section 3.5 gives a deep investigation of this problem. (4) 47
developers (34.8%) mentioned that the static checking tools
(e.g., Lint) and R&R tools can bring false alarms, i.e., the
reported issues are not real bugs. This issue usually wastes
developers’ time for inspecting them. (5) 43 developers
(31.9%) reported that some tools fail to consider various en-
vironment (e.g., screen rotation, network stability, different
geographic locations, heavy memory/CPU usage), which
are quite crucial for testing the usability and robustness of
mobile apps. (6) 42 developers (31.1%) hoped the testing
or checking tools could generate tests for verification or
generate more readable tests for debugging. For example,
some developers desired to get more readable tests from
Monkey. Developers have not provided other comments in
the “Others” option.

Answer to RQ3: Most developers agree detecting exception
bugs is crucial, however, manual testing is still the most prefer-
able testing method. Although different bug detection tools
are used, developers still have unsatisfactory points, e.g., high
manual efforts, insufficient bug detection, low reproducibility
rate, many false positives, lack of considering environment etc.

3.4 RQ4: Auditing Automatic Bug Detection Tools
Informed by the study of RQ3, this section aims to

investigate the effectiveness of bug detection tools. As re-
vealed by RQ3, most of the bug detection tools require
human assistance (e.g., writing tests). We note two groups
of tools, i.e., dynamic testing and static analysis tools, can
fully automate app exception checking. However, our pre-
vious investigation on the four static analysis tools, i.e.,
Lint, FindBugs, PMD, SonarQube, shows these tools are
almost ineffective in detecting framework exceptions due
to the lack of specific checking rules [29]. Unfortunately,
these tools have not provided handy APIs or command line
options to accept customized checking rules, and require
considerable code-level extensions. Thus, we decided not to

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 11

Fig. 11: Detection time of exceptions by each tool

Fig. 12: Occurrences of exceptions by each tool

include them in this evaluation, otherwise the results could
be unfair. Section 5 discusses plausible ways of improving
static analysis tools. We do not consider the cloud-based
testing services as well, which are pay-by-use and not
convenient to conduct large-scale evaluation on thousands
of apps. Therefore, we only focus on dynamic testing tools,
and evaluate them on the framework exceptions categorized
in Section 3.2. We selected 3 state-of-the-art dynamic testing
tools, i.e., Monkey [28], Sapienz [11], and Stoat [12]. The
survey in Section 3.3 shows these tools are used by a number
of real app developers (35 developers ever used). More
importantly, recent studies [69], [70] show, these tools are
proved to be the most effective on both open-source and
commercial apps, and have found hundreds of previously-
unknown crash bugs in well-tested apps.

We applied dynamic testing tools on each of 2,104 apps
with the same configurations in Section 2.2.2. We observed
that they could detect many framework exceptions. To un-
derstand their abilities, we used two metrics7. (1) detection
time (the time to detect an exception). Since one exception
may be found multiple times, we used the time of its first
occurrence. (2) Occurrences (how many times an exception is
detected during a specified duration). Fig. 11 and Fig. 12,
respectively, show the detection time and occurrences of
exceptions by each tool grouped by the fault categories.

From Fig. 11, we can see the abilities of these tools
vary across different fault categories. But we also note some
obvious differences. For example, following the guidelines
of statistical tests [71], we used Mann-Whitney U test [72], a
non-parametric statistical hypothesis test for independent
samples, to compare the detection time of some specific
fault categories across three tools. We find Sapienz is better
at database errors (i.e., use significantly less testing time)
than Monkey (p-value=0.02, and standardized effect size is

7. We do not present the results of trace length, since we find the three
tools cannot dump the exact trace that causes a crash. Instead, they
output the whole trace, which cannot reflect their detection abilities.

medium (0.41)) and Stoat (p-value=0.05*10−4, and standard-
ized effect size is large (0.65)). One important reason is
that Sapienz implements a strategy, i.e., fill strings in Edit-
Texts, and then click “OK” instead of “Cancel” to maximize
code coverage, which is more likely to trigger database
operations. Monkey and Sapienz, respectively, are better at
lifecycle errors than Stoat (p-values are, respectively, 0.002
and 0.001, and standardized effect sizes are, respectively,
medium (0.35) and small (0.25)). Because both Monkey and
Sapienz emit events very quickly without waiting for the
previous ones to take effect, e.g., open and quickly close an
activity without waiting for the activity finishes its task.

In addition, we note concurrency errors are non-trivial
for all three tools, i.e., Monkey, Sapienz and Stoat. But their
detection times are not significantly different according to
our statistical test. The medians of their detection times
are, respectively, 52, 69 and 58 minutes. In Fig. 12, the
occurrences of API compatibility, Resource-Not-Found and
XML errors are much more than those of many other fault
categories across three tools. It indicates these errors are
easier to be repeatedly detected. But, on the other hand,
Concurrency, Lifecyle, UI update errors are more difficult to
be repeatedly detected, regardless of the testing strategies
of these tools. The main reason is that these errors contain
more non-determinism (interacting with threads).

After an in-depth inspection, we find that some Database
errors are hard to trigger because the app has to construct
an appropriate database state (e.g., create a table or insert
a row, and fill in specific data) as the precondition of the
bug, which may take a long time. As for Framework Con-
straint Error, some exceptions require special environment
interplay. For example, InstantiationException of Fragment
can only be triggered when a Fragment is destroyed and
recreated. To achieve this, a testing tool needs to change
device rotation at an appropriate timing (when the target
Fragment is on the screen), or pause and stop the app by
switching to another one, and stay there for a long time (let
Android OS kill the app), and then return back to the app.
Concurrency bugs (e.g., data race) are hard to trigger since
they usually need right timing of events.

Answer to RQ4: Dynamic testing tools are less effective in
detecting concurrency, database and lifecycle errors. Different
testing strategies have a big impact on the bug detection
ability against different types of framework exceptions. More
effective dynamic testing strategies are demanded to help detect
framework exceptions.

3.5 RQ5: Reproducibility of Exception Bugs

This section investigates the reproducibility of excep-
tion bugs, which is crucial for bug diagnosing and fix-
ing. Android apps are event-centric programs and run in
complex environment. Typically, the bug-triggering inputs
are described as a few reproducing steps (in the form of
natural language by humans or event sequences generated
by testing tools) and contextual conditions (e.g., device
models, network status, and other device settings [73]).
Prior work improves the reproducibility of crash bugs by
augmenting bug reports [74], [75], [76], [77], translating a
bug report (written in natural language) into an executable
UI test [78], [79], and leveraging crowd-sourced monitor-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 12My Untitled Chart

<10%: 22.8 %<10%: 22.8 %

10%-30%: 60.6 %10%-30%: 60.6 %

30%-50%: 15.0 %30%-50%: 15.0 %

>50%: 1.6 %>50%: 1.6 %

Fig. 13: Percentage of cases in failing to reproduce excep-
tions even if the reproduction steps are given.

ing [80]. However, to our knowledge, no previous efforts
has investigated the reproducibility of exception bugs, from
these two perspectives: (1) how do app developers, and
(2) how do automatic testing tools, perform in reproducing
bugs, which this section will explore.

3.5.1 Perspective of App Developers

In our survey, we asked developers Q13 “In your experi-
ence, given the reported reproducing steps, how much percentage
of cases in which you still cannot reproduce the crash excep-
tion?”. We gave them the four options, i.e., <10%, 10%∼30%,
30%∼50%, and >50%. Fig. 13 shows the responses. We
find 82 developers (60.6%) reported they fail to reproduce
10%∼30% exception bugs, which were not ignorable. Fur-
ther, 20 developers (15%) could not successfully reproduce
30%∼50% exception bugs, and 2 developers even could not
reproduce over 50% exceptions. 31 developers (22.8%) chose
the option <10%. Further, from the responses of 43 senior
developers (with over 3 years working experience), we find
only 11 of them (25.6%) choose the option <10%, which
indicates experienced developers also face difficulties in re-
producing bugs. Based on the above observations, although
developers in fact are quite familiar with their own apps and
implementations, we can see reproducing exception bugs is
still difficult for human developers, even if the reproduction
steps are given.

We further asked developers Q14 “If you cannot repro-
duce the crash exception, in your experience, which reasons may
affect the reproducibility?”. Five options are provided: (A)
concurrency or asynchronous bugs (e.g., data race), (B) specific
running environment (e.g., low memory, external file access,
usage of specific third-party library), (C) specific device models
(e.g., framework API version, OS customization), (D) specific
system configurations or settings (e.g., WiFi/4G, GPS on/off,
enable/disable specific developer options), and (E) Others (for
any developers’ comments). The first four options were dis-
tilled from three sources: (1) the app developers’ comments
and discussions from GitHub issue repositories when they
resolve bug reports, (2) our own experience of reproducing
bugs during our own research [29], [81], [79], and (3) the
previous work on bug reproduction [76], [80], [78].

Fig. 14 shows the results. 85 developers (63%) selected
(C). They indicated different API versions and vendor mod-
els could affect the reproducibility because the platform
where the apps are developed is usually different from
the one where the apps are used. 82 developers (60.7%)
chose (B). They indicated some specific execution environ-
ment (e.g., heavy system load, external file access, etc) may
affect the reproducibility. The developers felt difficult to
record and restore the exact environment when the app

85

82

53

44

Specific device models

Specific execution
environment

Concurrency bugs need
strict-triggering time

Specific system
configuration/setting

0 20 40 60 80 100

Highcharts Cloud https://cloud.highcharts.com/create?q=ErzjxpSXq

1 of 1 12/24/18, 19:17

Fig. 14: Difficulties of reproducing exceptions.

crashes. 53 developers (39.3%) selected (A), since some con-
currency bugs require specific thread scheduling and strict
timing [81]. 44 developers (32.6%) reported missing “specific
system configurations or settings” in the reproduction steps
could also affect the reproducibility. For example, some bugs
can only be manifested with mobile data instead of WiFi.

We further asked app developers an open question Q15
“How do you improve the reproducibility of exception bugs
during your development?”. 12 app developers answered this
question. They added customized logging interfaces to gain
important running information, or used some off-the-shelf
crash reporting systems, e.g., ACRA [82], Google Firebase
Crashlytics [83], Splunk MINT [84], to collect raw analytics.
Specifically, these crash reporting systems (integrated as
app plugins) collect the contextual environment (e.g., SDK,
OS, app version, hardware model, memory usage), the
exception traces, the steps leading to crash (usually in the
form of screenshots) to facilitate crash analysis. However,
these developers still felt quite challenging to faithfully
reproducing exception bugs the users experience in vivo.

3.5.2 Perspective of Testing Tools
To investigate how testing tools perform in reproducing

bugs, we chose two Android GUI testing tools, i.e., Sapienz
and Stoat. As stated in Section 3.4, these two tools are
now the state-of-the-art in finding crash bugs. Specifically,
to record & replay the tests, we used Android Monkey
script [85] for Sapienz, and UIAutomator script [86] for
Stoat. When an app crashes during the testing, we will
record the exception trace, and the corresponding crash-
triggering test (i.e., the event sequences that led to the crash).

To mitigate test flakiness [87], [88], [89], we deployed
the reproducing process on two physical machines, each of
which ran 6 emulators with the exact same environment and
configurations as the previous testing process in Section 3.4.
In addition, we ran each test for five times, and recorded
how many times the exception bugs could be triggered.
The machine state was cleared between each test run. If the
exactly same exception (with the same exception type and
stack trace) was triggered among the 5 runs, we regarded
the test as a valid one that can faithfully reproduce the crash.
In total, we replayed the tests of 4,009 and 3,535 exception
bugs (including all the three exception categories) found
by Sapienz and Stoat, respectively. The whole reproducing
process took two months. Note that we have not included
Monkey in this investigation, since we find the tests of
Monkey are very flaky8.

8. Our preliminary investigation reveals Monkey’s tests are much
more flaky than those of Stoat and Sapienz. We find most of Monkey’s
tests have thousands of events, while those of Sapienz and Stoat have
merely hundreds or tens of events, respectively.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 13

TABLE 5: Statistics of reproducible exceptions across the
three exception categories.

Tool #Total #Application #Framework #Library
Sapienz 279 82 (6.5%) 169 (7.2%) 28 (6.9%)

Stoat 269 189 (9.6%) 76 (5.3%) 4 (3.2%)

Re
pr

od
uc

ibl
e R

ate

Sapienz Stoat

Co
ns

tra
int AP

I

Co
nc

ur
re

nc
y

Da
tab

as
e

Re
so

ur
ce

Me
m

or
y

Ind
ex

Lif
ec

yc
le

Ot
he

rs

Pa
ra

m
ete

r

UI
 u

pd
ate XM

L

0%

10%

20%

30%

40%

Fig. 15: Reproducibility rate of the 11 root causes of frame-
work exceptions w.r.t. Sapienz and Stoat.

Finally, Sapienz and Stoat triggered 15.7% (629/4,009)
and 28.2% (996/3,535) of all exception bugs, respectively,
by replaying the recorded tests. However, among these
triggered exceptions, only 279 exceptions of Sapienz (6.9%,
including 82 application exceptions, 169 framework excep-
tions, and 28 library exceptions) and 269 exceptions of Stoat
(7.6%, including 189 application exceptions, 76 framework
exceptions, and 4 library exceptions), respectively, were
faithfully reproduced. Obviously, the reproducibility rate of
exception bugs were quite low. In the remaining cases that
triggered exceptions, we find the tests either triggered (1)
the exceptions with different types, or (2) the exceptions
with the same types but different stack traces. We further
inspected a number of those “unfaithfully” reproduced
exceptions (i.e., the cases in (2)), and found some of them
actually triggered the same bugs but the stack traces were
slightly different from the expected ones.

Table 5 shows the numbers of reproducible exceptions
across the three exception categories, respectively. In the
parentheses, the percentage numbers indicate the ratios
of reproducible exceptions among all exceptions of that
category. We can see the reproducibility rates of these three
exception categories do not have much differences, although
Stoat has lower rates on framework and library exceptions,
compared to Sapienz. Fig. 15 shows the reproducibility rates
of the 11 root causes of framework exceptions. We can
see that both Stoat and Sapienz can reproduce more ex-
ceptions of Resource-Not-Found, Memory/Hardware, and
XML Layout errors (over 10%), while neither of them has
good performance at Concurrency, API Update and Com-
patibility, and Database Management errors.

Overall, the reproducibility of exception bugs is low for
both Sapienz and Stoat. We further investigated the reasons
behind, and observed the three main difficulties.
• Test dependency. Both Sapienz and Stoat only record the
current test that triggers the exception. However, many
exceptions can only be manifested under specific precon-
ditions, which need to be created by some previous tests.
As a result, only replaying the current test may fail the
reproduction. Simply recording all the previous tests is
ineffective, while selectively recording the necessary tests
w.r.t. the exception is nontrivial.

• Timing of Events. The execution timing of events are cru-
cial for manifesting some types of exceptions. For example,
concurrency bugs require critical timing of events, so as to
create specific thread scheduling [81]. In other scenarios, due
to the latency of network or computation, some UI widgets
may not be quickly ready for executing the next event —
causing the ignorance of the next event. Such ignorance may
have negative effect on the execution of the whole event
sequence, leading to totally different execution paths and
results. Thus, to improve reproducibility, the tests should
contain timing control operations.
• Specific Running Environment or Configurations. Trigger-
ing some exceptions require specific running environment,
e.g., the existence of specific files on the SD card. For
example, one of the reasons for OutOfMemoryError is that
the app tries to load a large-size file from the SD card.
Without this file, such exceptions could not be reproduced.
Some exceptions can only be triggered under specific sytem
configurations, e.g., disabling network access or granting the
permission of using camera.

Answer to RQ5: Reproducing exceptions is difficult for
developers, and also challenging for automated testing tools.
Specific device models, specific execution environment, con-
currency issues, specific system configurations are the four
main difficulties rated by developers. The reproducibility rates
of Sapienz and Stoat are quite low (only 6.9% and 7.6%,
respectively). Test dependency, timing of events, and specific
running environment are the three main observed challenges
for testing tools to faithfully reproduce exceptions..

3.6 RQ6: Fixing Patterns and Characteristics
This section uses the exception-fix repository constructed

in RQ2 (194 instances) to investigate the common practices
of developers to fix framework exceptions. We categorized
their fixing strategies by (1) the types of code modifications
(e.g., modify conditions, reorganize/move code, tweak im-
plementations); (2) the issue comments and patch descrip-
tions. We finally summarized five common fix patterns,
which can resolve over 90% of the issues in the repository.
We further presented Q16 to the developers, and asked
them to choose which fix practice they have ever used to
fix framework exceptions. Fig. 18 shows the responses. We
detail these fix practices as follows, which are ordered by
the popularity from the most to the least.
• Work in Right Callbacks. Inappropriate handling lifecycle
callbacks of app components (e.g., Activity, Fragment, Ser-
vice) can severely affect the robustness of apps. The common
practice to fix such problems is to work in the right call-
back. For example, in Activity, putting BroadcastReceiver’s
register and unregister into onStart() and OnStop() or onRe-
sume() and OnPause() can avoid IllegalArgument; and com-
mitting a FragmentTransaction before the activity’s state has
been saved (i.e., before the callback onSaveInstanceState())
can avoid state loss exception [90], [91].
• Refine Conditional Checks. Missing checks on API pa-
rameters, activity states, index values, database versions,
external resources can introduce unexpected exceptions.
Developers usually fix them via adding appropriate con-
ditional checks. For example, Fig. 17 (a) checks cursor index
to fix CursorIndexOutOfBound, Fig. 17 (b) checks the state of
the activity attached by a Fragment to fix IllegalState. Most

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 14

// MozStumbler revision 6adbfe5
public class ServiceBroadcastReceiver extends BroadcastReceiver{

public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
... // handle the intent
if (mMainActivity != null) {

- mMainActivity.updateUI();
+ mMainActivity.runOnUiThread(new Runnable() {
+ public void run() {
+ mMainActivity.updateUI();
+ }
+ });

}}}

Fig. 16: Example fixes by moving code into correct thread
(a) qBittorrent-Controller revision 8de20af

Cursor cursor = contentResolver.query(...);
- cursor.moveToFirst();
+ if(cursor != null && cursor.moveToFirst()) {

int columnIndex = cursor.getColumnIndex(filePath);
... // get the result from the cursor

+ }

(b) WordPress revision df3392f
public class AbstractFragment extends Fragment{
protected void showError(int messageId) {

+ if(!isAdded()) { return; }
FragmentTransaction ft = getFragmentManager()...
... //commit a transaction to show a dialog

}}

(c) MTA-Fare-Buster revision dba01df
String input = amountOnCard.getText().toString();

+ if (input.equals("")) {
+ amountOnCard.setText(...); //set default value
+ }

float amountOnCardValue=Float.valueOf(input.toString());
...

Fig. 17: Example fixes by adding conditional checks

exceptions from Parameter Error, Indexing Error, Resource Er-
ror, Lifecycle Error, and API Error were fixed by this strategy.
• Move Code into Correct Thread. Messing up UI and
background threads may incur severe exceptions. The com-
mon practice to fix such problems is to move related code
into correct threads. Fig. 16 fixes CalledFromWrongThread
by moving the code of modifying UI widgets back to the
UI thread (via Activity#runOnUiThread()) that creates them.
Similar fixes include moving the showings of Toast or
AlertDialog into the UI thread instead of the background
thread since they can only be processed in the Looper of
the UI thread [92], [93]. Additionally, moving extensive
tasks (e.g., network access, database query) into background
threads can resolve the exceptions NetworkOnMainThread
and “Application Not Responding" (ANR) [94].
• Change APIs or Design Patterns. Developers may fix an
exception by using other APIs to achieve similar functional-
ities. For example, they will replace depreciated APIs with
newly imported ones. Sometimes, they directly change the
design pattern to avoid exceptions, which cannot be easily
fixed in the original design.
• Optimize data storage and manipulations. To resolve
other exceptions, developers have to carefully adjust im-
plementation algorithms, e.g., optimize data storage and
manipulations. For example, to fix OutOfMemory caused by
loading Bitmap, the common practice is to optimize memory
usage by resizing the original bitmap [95]; to fix data race
exceptions, the common practice is to adopt mutex locks
(e.g., add synchronized to allow the execution of only one
active thread) or back up the shared data [96].

To further understand the characteristics of developer
fixes, we grouped these issues by their root causes, and
computed (1) the number of code lines9 the developers
changed to fix this issue (Fig. 19), and (2) the issue closing

9. To reduce “noises", we excluded comment lines (e.g., “//...”), an-
notation lines (e.g., “@Override”), unrelated code changes (e.g., “import
.”, the code for new features).

72

72

65

60

54

Work in right callbacks

Refine conditional
checking

Move code into correct
thread

Change APIs or design
pattern

Optimize data storage
and manipulation

0 20 40 60 80

Fig. 18: Popularity of common fix practices by developers.

rate (column “Closing Rate” in Table 4). We can see that
the fixes for Parameter Error, Indexing Error, Resource Error,
and Database Error require fewer code changes (most patches
are fewer than 20 lines). Because most of them can be fixed
by refining conditional checks. We can also note UI Update
Error, API Updates and Compatibility Error, Concurrency Error,
Memory/Hardware Error and XML Design Error require larger
code patches. Because fixing these issues usually require
more manipulations on UI components, API compatibility,
threads, memory and GUI design resources, respectively.

Further, by investigating the discussions and comments
of developers when fixing, we find three important reasons
that reveal the difficulties they face.
• Difficulty of Reproducing and Validation. One prominent
difficulty is how to reproduce exceptions and validate the
correctness of fixes [76]. Most users, testing tools or plat-
forms do not report complete reproducing steps/inputs and
other necessary information (e.g., exception trace, device
model, code version) to developers. In most bug reports,
we find only an exception trace is provided.

We surveyed the developers with Q17 “In your experience,
how much percentage of exceptions you are able to fix if you
are only provided with an exception trace?”. We find only
12 developers (8.9%) reported they could fix over 70%
exception bugs (only three developers say they could fix
more than 90% exceptions). 27 developers (20.0%) selected
10∼30% exceptions, 54 developers (40.0%) selected 30∼50%
exceptions, and 39 developers (28.9%) selected 50∼70%
exceptions, respectively. We can see fixing exceptions could
be rather difficult if only exception traces are available. In
other cases, reproducing and validating non-deterministic
exceptions (e.g., concurrency errors) could be harder. After
fixing these issue, developers choose to leave the app users
to validate before closing the issue. As shown in Table 4,
concurrency errors have low fixing rate.
• Inexperience with Android System. A good understanding
of Android system is essential to correctly fix exceptions.
As the closing rates in Table 4 indicate, developers are
more confused by Memory/Hardware Error, Lifecycle Error,
Concurrency Error, and UI Update Error. We find some
developers use simple try-catch or compromising ways (e.g.,
use commitAllowingStateLoss to allow activity state loss) as
workarounds. However, such fixes are often fragile.
• Fast Evolving APIs and Features. Android is evolving
fast. As reported, on average, 115 API updates occur each
month [97]. Moreover, feature changes are continuously
introduced. However, these updates or changes may make
apps fragile when the platform they are deployed is differ-
ent from the one they were built; and the developers are

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 15

Fig. 19: Fixing in terms of number of changed lines.

confused when such issues appear. For example, Android
6.0 introduces runtime permission grant — If an app uses
dangerous permissions, developers have to get permissions
from users at runtime. However, we find several developers
choose to delay the fixing since they have not fully under-
stand this new feature.

Answer to RQ6: Working in the right callbacks, using correct
thread types, refining conditional checks, changing APIs or
design patterns, optimizing data storage or manipulation are
the five common fix practices. When developers fix framework
exceptions, UI Update Error, API Updates and Compatibil-
ity Error, Concurrency Error, Memory/Hardware Error and
XML Design Error require larger code patches. Meanwhile,
reproducing exceptions and validating the fixes, understanding
different mechanisms in Android system and adapting to
fast-evolving Android APIs and features are the three main
difficulties that developers face during fixing.

4 THE BENCHMARK DroidDefects
Based on the data and analysis results in Section 3, this

section aims to construct a benchmark of exception bugs
for Android apps. This benchmark can facilitate follow-up
research (e.g., static fault analysis [98], fault localization [25],
program repair [26]), and help measure effectiveness of
proposed techniques in a controlled and systematic way.

However, constructing such a benchmark is non-trivial.
First, for Android apps, most bug-triggering tests are re-
ported in natural language, which describe the specific
user actions to manifest the defects. These tests cannot be
directly executed against the app to validate bugs [74].
Automatically translating these tests to executable ones are
extremely difficult [78], [79]. Second, Android system and its
apps are evolving fast, and use a diverse set of third-party
libraries and different build systems (e.g., Gradle, Ant). These
dependencies make it rather difficult to fully automate
the build process, and usually involve considerable human
efforts to resolve issues. Third, GUI tests can be notoriously
flaky [87], [88], [89], which may not be able to determin-
istically manifest the defects. Due to these challenges, we
cannot follow prior benchmarking methods [99], [100] to
automate the construction. To bridge the gap, we made
tremendous efforts to construct this benchmark.

4.1 Android App Defect Scenario
Our bug repository, DroidDefects, now only considers re-

producible, crash defects that are the bugs of apps themselves.
Other defects like Android system bugs [101], third-party
library bugs [102], device fragmentation bugs [64], and non-

crashing bugs (e.g., performance and energy bugs [103],
resource and memory leaks [57], [104], GUI failures [105],
[106], security bugs [107], [108]) are not considered. To
characterize an Android app bug in our context, we define
the defect scenario as follows, which includes
• A complete app project with one specific defect, which incor-

porates the source code, the dependency libraries and
the build scripts (e.g., Gradle or Ant). The project can
be successfully compiled into an apk file for running
on an emulator or a real device; and the defect can be
deterministically reproduced by one or more tests.

• An exception stack trace, which is induced by the defect.
It provides certain clues of the defect (e.g., the exception
type, message, and the invoked methods). In particular,
it tracks the sequence of called methods up to the point
where the exception is thrown.

• A bug-triggering test and its environment, which can de-
terministically manifest the defect of the app, given the
specific environment (e.g., API version, system configura-
tion). The test usually is composed of a sequence of user
actions and/or system events. The test can be written in
the form of natural language, JUnit-based test scripts (e.g.,
Espresso [109], UIAutomator [86]) or low-level events
(e.g., Monkey scripts [85]).

• Optionally, a developer-written repair or patch, which fixes
the faulty behavior w.r.t. the defect. It can be used for
understanding the defect.

4.2 Artifacts of DroidDefects
DroidDefects contains three main artifacts: (1) dataset of

reproducible defects, (2) dataset of ground-truth defects,
and (3) utility scripts.
Dataset of reproducible defects. This dataset now contains
33 reproducible defects from 29 Android apps, and covers
26 distinct exception types. This dataset helps researchers
to understand the characteristics of different app excep-
tions, and enables detailed analysis. Although this dataset
is relatively small, but it covers different types of excep-
tion bugs from the 11 common root causes, and provides
with detailed reproducibility and root cause information.
All these information has never been considered in those
previously constructed dataset [69], [27], [78], [26]. We will
continuously evolve and enhance this dataset to include
more exception instances, although our experience indicate
this process requires tremendous manual efforts [79]. Sec-
tion 4.3.1 gives the setup details. For each defect, it provides:
• Source code of faulty app version, the complete source

code of the faulty app version with the build scripts and
the compiled apk file.

• Reproducible tests, the test cases that can deterministi-
cally manifest the defect (written in natural language).

• Exception trace, the exception trace w.r.t. the defect.
• Root cause analysis, the explanation of the defect.
In the current version of dataset, we have not yet included
non-deterministic defects (e.g., data race bugs [66], [56]),
since they require specific timing controls.
Dataset of ground-truth defects. This dataset provides 3,696
distinct real faults from 821 apps, which cover all the 11 root
causes summarized in Section 3.2. For each fault, we provide
the app project source code, the executable apk file and the
exception trace. This dataset can be used to evaluate the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 16

TABLE 6: Statistics of ground-truth defects w.r.t. 11 common
root causes of framework exceptions.

Category (Name for short) #Defects #Apps
API Updates and Compatibility (API) 33 16
XML Layout Error (XML) 66 30
API Parameter Error (Parameter) 675 181
Framework Constraint Error (Constraint) 168 95
Index Error (Index) 551 183
Database Management Error (Database) 51 15
Resource-Not-Found Error (Resource) 1,238 286
UI Update Error (UI) 170 53
Concurrency Error (Concurrency) 241 71
Component Lifecycle Error (Lifecycle) 301 160
Memory/Hardware Error (Memory) 123 63
Others (Java-specific errors) 79 40
Total 3,696 821

effectiveness of the fault detection, localization or repairing
techniques at the large-scale. Section 4.3.2 details the setup.
Utility scripts. The utility scripts contain the APIs to run
existing tools, including dynamic testing tools (Monkey,
Sapienz, and Stoat) and static analysis tools (Lint and Find-
Bugs). This can ease the setup of evaluation. For example,
researchers can evaluate his/her newly-proposed testing
tool with the three state-of-the-art ones on our dataset via
calling dedicated APIs.

4.3 Benchmark Setup Details
Apps. To construct DroidDefects, we chose to use open-source
apps since the availability of source code enables detailed
analysis. We chose app subjects from F-Droid. As discussed
in Section 2.2.1, F-Droid apps are the representatives of real-
world apps and most of them are maintained on GitHub.

4.3.1 Setup of reproducible defects
Selection Criteria. To construct a comprehensive dataset, we
used exception types as the main guidance. Specifically, we
purposely selected a number of typical Android app defects
to cover each exception type from each root cause group
(summarized in Section 3.2), respectively.
Source of defects. We mainly collected Android app defects
from GitHub issue repositories, since these defects may be
reported with the reproduction steps and other information.
We also referred to the defects used by recent literature [78],
[26]. We have not considered the defects from testing tools
in Section 3.4, since as revealed in Section 3.5, the repro-
ducibility rates of generated tests are very low.
Manual Validation. To collect valid defects from GitHub
issue repositories, we reused the dataset of app excep-
tions collected in Section 2.2.2. We used the keywords
“crash/stop”, “reproduce”, “replicate”, “version” to fur-
ther filter the exceptions, and only considered the issues
submitted in recent years. We constrained our focus on
these keywords since we hoped to focus on those fail-stop
defects10 with clear reproduction steps on the specific app
versions, which are quite important for manual validation
and reproduction. We selected recent issues by considering
Android apps could have outdated dependencies. Finally,
we got 448 issues. However, by randomly inspecting some
filtered issues, we note there were still many invalid ones
(e.g., the reproduction steps are incomplete, the keyword
“version” did not match with the “app version”, etc).

10. Note that not all exceptions can trigger app crashes, e.g., caught
exceptions or system warning exceptions (e.g., the WindowLeaked ex-
ception only gives resource-leak warning without failing apps).

Next, three authors of this paper spent one month to
manually validate and reproduce these issues. Specifically,
we worked in the following steps. First, we randomly sam-
pled some candidate issues for each exception type. Second,
to get the faulty code version Vbug , we either (1) checked
out the code commit right preceding the fixed version Vfix

if the bug fix is explicitly mentioned, or (2) checked out
Vbug according to the specified app version or the issue
submission time. Third, we built the app into an executable
apk via build scripts or Android Studio. Last, we installed
the app on an Android device to replay the described repro-
duction steps and observe whether the exact exception will
be thrown. In our experience, various reasons may fail the
above reproduction process. For example, the compilation
may fail due to outdated dependencies; the exception can-
not be manifested due to incomplete reproduction steps or
environment issues. Therefore, if we could not successfully
reproduce an exception within one hour, we resorted to the
other candidates. Finally, we got 33 reproducible defects.

4.3.2 Setup of ground-truth defects
To construct a large dataset of ground-truth defects, we

leveraged the exceptions revealed by dynamic testing tools
in Section 3.4. Table 6 shows the statistics of this dataset w.r.t.
the root causes of framework exceptions. In total, we col-
lected 3,696 framework exceptions across 11 common root
causes, which were discovered in 821 unique Android apps.
To facilitate the use, we characterized the complexity of each
faulty app by number of lines, number of methods, number
of activities, and number of classes, and the diversity by the
app category. Finally, we got 3,696 ground-truth defects.

5 APPLICATIONS OF OUR STUDY

5.1 Improving Exception Detection
Dynamic Testing. Enhancing testing tools to detect specific
errors is very important. For example, (1) Generate mean-
ingful as well as corner-case inputs to reveal parameter errors.
We find random strings with specific formats or characters
are very likely to reveal unexpected crashes. For instance,
Monkey detects more SQLiteExceptions than the other tools
since it can generate strings with special characters like
“"” and “%” by randomly hitting the keyboard. When
these strings are used in SQL statements, they can fail SQL
queries without escaping. (2) Enforce environment interplay
to reveal lifecycle, concurrency and UI update errors. We find
some special actions, e.g., change device orientations, start
an activity and quickly return back without waiting it to
finish, put the app at background for a long time (by calling
another app) and return back to it again, can affect an
app’s internal states and its component lifecycle. Therefore,
these actions can be interleaved with normal UI actions to
effectively check robustness. (3) Consider different app and
SDK versions to detect regression errors. We find app updates
may introduce unexpected errors. For example, as shown in
Fig. 8, the changes of database scheme can crash the new
version since the developers have not carefully managed
database migration from the old version. (4) More advanced
testing criteria [110], [111] are desired to derive effective tests.
Static Analysis. Incorporating new checking rules into static
analysis tools to enhance their abilities is highly valuable.
We find FindBugs and SonarQube have not included any

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 17

Android-specific checking rules, while PMD defines three
rules [112], although these tools all support checking An-
droid projects. Lint defines 281 Android rules [113] but
only covers a small portion of framework-specific bugs [29].
However, there are plausible ways to improving these tools.
For example, to warn the potential crash in Fig. 7, static anal-
ysis can check whether the task running in the thread uses
Handler to dispatch messages, if it uses, Looper#prepare()
must be called at the beginning of Thread#run(); to warn the
potential crash in Fig. 5, static analysis can check whether
there is an appropriate checking on activity state before
showing a dialog from a background thread. In fact, some
work [98] already implements the lifecycle checking in Lint.
Demonstration of Usefulness. We implemented Stoat+, an
enhancement version of Stoat [12] with two new strategies.
These two strategies include eight enhancement cases: (1)
five specific input formats (e.g., empty string, lengthy string,
null) or characters (e.g., “"”, “%”) to fill in EditTexts or
Intent’s fields; (2) three specific types of environment-interplay
actions mentioned in Section 5.1. These two strategies were
implemented in the MCMC sampling phase of Stoat, and
randomly inject these specific events into normal GUI tests
to improve fault detection ablitiy (see Section 4.4 in [12]).
We applied Stoat+ on dozens of most popular apps (e.g.,
Facebook, Gmail, Google+, WeChat) from Google Play, and
each app was tested for ten hours on a Google Pixel 3 device.
At last, we successfully detected 3 previously unknown
bugs in Gmail (one parameter error) and Google+ (one UI
update error and one lifecycle error). All of these bugs were
detected in the latest versions at the time of our study,
and have been reported to Google and got confirmed. The
detailed issue reports were available at the Stoat’s web-
site [114]. However, these bugs were not found by Monkey
and Sapienz, while other testing tools, e.g., CrashScope [115]
and AppDoctor [116], only consider 2 and 3 of these 8
enhancement cases, respectively.

5.2 Enabling Exception Localization

We find developers usually take days to fix a framework
exception. Thus, automatically locating faulty code and
proposing possible fixes are highly desirable. Our study can
shed light on this goal.
Demonstration of Usefulness. We built a framework ex-
ception localization tool, ExLocator, based on Soot [117],
which takes as input an APK file and an exception trace,
and outputs a report that explains the root cause of this
exception. It currently supports 5 exception types from UI
Update, Lifecycle, Index, and Framework Constraint errors.
In detail, it first extracts method call sequences and ex-
ception information from the exception trace, and classifies
the exception into one of our summarized fault categories
according to the root exception and signalers. As shown in
Section 3.2, these specific exception types have obvious fault
patterns (e.g., incorrect handling background threads). Exlo-
cator utilizes these patterns and data-/control-flow analysis
to locate the root cause. More technical details can be found
in our descendant tool APEchecker [81], which automati-
cally localizes UI update errors. The report gives the lines
or methods that causes the exception, the description of the
root cause and possible fixing solutions, and closely related
Stack Overflow posts. From our benchmark DroidDefects,

we randomly selected 6 exception cases for each of five
supported exception types. At last, we got 30 exception
cases in total. ExLocator was successfully able to locate
28 exceptions out of 30 (93.3% precision) by comparing
with the patches by developers. By incorporating additional
context information from Android framework (e.g., which
framework classes use Handler), our tool successfully iden-
tified the root causes of the remaining two cases. However,
all previous fault localization work [118], [119], [25], [120]
can only handle generic exception types.

5.3 Enhancing Mutation Testing
Mutation testing is a widely-adopted technique to assess

the fault-detection ability of a test suite, as well as to guide
test case generation and prioritization [121]. One crucial step
of applying mutation testing in a new application domain
(e.g., Android apps) is to design specific mutation operators,
which can represent typical programming faults, in addition
to those generic mutation operators. For example, a number
of mutation testing tools for Java programs (e.g., Pit [122]
and Major [123]) are available, but they do not include any
Android-specific mutation operators. As a result, they may
generate trivial mutants that may directly crash themselves
when startup or cannot be complied into executables.

We identified 75 different exception instances (with
unique exception types and messages) from the data in
Table 4. But we find existing mutation operators [124], [125],
[126], [127], [128] designed for Android apps only cover a
few of these instances. Specifically, only 4 mutation opera-
tors (i.e., Intent Playload Replacement, Actvity/Service Lifecycle
Method Deletion, Fail on Back) of Deng et al.’s 17 opera-
tors [125], [126] may help reveal some specific framework
exceptions (e.g., lifecycle-related issues). Their remaining
operators focus on detecting UI, event handling and energy
failures instead of fatal crashes. MDroid+ [127] proposes 38
operators, but can only cover 8 exception instances in our
study. Based on the results of our study, researchers could
add more mutation operators. For example, we can delete
Activity state checking statements from those methods run-
ning in background threads to inject Lifecycle errors (see
Fig. 5); we can also remove specific statements (e.g., app
state storage) from some Fragment’s lifecycle callbacks (e.g.,
onSaveInstanceState) to inject state loss errors [90], [91];
we can also change some data access from UI threads to
background threads to inject UI update errors (see Fig. 6).
We can also inject many Framework constraint errors (e.g.,
see the example in Fig. 7). All these generated mutants can
be successfully compiled and only detectable at runtime
with specific GUI tests. Thus, more mutation operators can
be introduced for framework exception types to improve
mutation testing of Android apps.

6 DISCUSSION

6.1 Lessons Learned
We have learned several lessons from this study. We

summarize them to inspire practitioners and researchers,
and motivate future work.
Automatically reproducing exceptions need more research
efforts. Reproducing exceptions is very important for bug
diagnosing and fixing. First, in practice, only (incomplete)
reproduction steps (written in natural language) or ex-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 18

ception traces are available to developers. Although some
tools [75], [115], [78], [79] have been developed to im-
prove or automate bug reproduction, their effectiveness and
usability are still limited. CrashScope [115] improves the
reproducibility by recording more contextual information
of bug-triggering event sequences. However, it still cannot
handle exception bugs caused by inter-app communica-
tions. Yukusu [78] translates a bug report written in natural
language into executable test cases. However, according to
our replication of their evaluation, we find Yukusu still
focuses on creating test cases instead of reproducing the
expected bugs. RecDroid [79] is a further step of Yukusu,
which aims to automatically reproduce the expected crash
bugs from a bug report. However, it cannot cover all types
of exception bugs (e.g., concurrency bugs) and its ability
is limited by its predefined grammar patterns. Thus, how
to effectively and faithfully reproducing the intended bug
described in a bug report still requires more research efforts.
Second, how to reproduce an exception with a short event
trace is also important [129], [130]. Existing testing tools
(e.g., Monkey and Sapienz) usually generate quite long
traces which are flaky and not suitable for reproducing.
However, when applied for GUI programs, existing test
reduction techniques, e.g., delta debugging [129], [131], still
have high performance overhead. Thus, how to efficiently
reduce bug-triggering tests is still an open problem. Third, if
only an exception trace is available, effective techniques for
locating faulty code and then generating the bug-triggering
tests at the UI level are quite useful for bug reproduction.
However, existing fault localization techniques for Android
apps [25] are far from mature, and limited to trivial types of
exceptions. Little research efforts has been done to link the
app logic code with UI widgets for interactive debugging of
Android apps. This deserves more research efforts.
Effective bug detection tools are in great demand. Both
dynamic and static bug detection techniques are needed to
effectively reveal as many exception bugs as possible before
app release. First, Android apps could be complicated and
have different types of bugs, and different testing strategies
could have very different performance in detecting excep-
tions. Thus, one plausible idea is to combine the strengthens
of these strategies together, e.g., combining random testing
and systematic GUI exploration [70], or using static analysis
to guide dynamic testing [81]. Second, static analysis tools
could include more specific rules to check potential bugs
and keep update with the evolution of Android system. The
rules that are closely related to Android programming er-
rors (e.g., Component Lifecycle Error, Framework Constraint
Error, UI Update Error) could have higher fault detection
abilities. Third, bug detection tools should improve their
usability. For example, dynamic testing tools should pro-
vide mechanisms to automatically bypass user logins or
accept user-provided account information, otherwise, they
are likely trapped at the login pages. Other tool features
are also very useful, e.g., leveraging user-provided oracles,
generating more readable and less flaky tests, reducing
number of false positives. These can improve bug detection
and reproduction, and save debugging efforts.
Better documentation and technical tutorials are needed.
A comprehensive and intuitive technical documentation
is very important for developers to quickly understand

Android system and avoid programming errors. However,
during this study, we find this issue is still prominent. For
example, we notice developers are more capable of fixing
trivial errors (e.g., Parameter Error, Index Error) according
to their Java programming knowledge, but takes more time
and needs more discussions when fixing such Android-
specific issues as Component Lifecycle, Memory/Hardware,
Concurrency, and UI Update errors. However, some sophis-
ticated mechanism are not well documented in the official
Android documentation. One typical example is about the
state loss issue when handling Activity and Fragment life-
cycle [90]. Junior developers have to refer to those technical
posts from experienced developers.

Second, we find some developers cannot quickly get
familiar with the newly-introduced features. We observe
some developers chose to delay the upgrading of their
apps to new Android platforms. For example, Android
introduces runtime permission granting since API 23; and
supports Kotlin since API 27. Better documentation and
training courses should be continuously updated to help
developers gain more understanding of new mechanisms,
and let them know the feature evolution of Android system.

6.2 Threats to Validity
External Validity. First, our selected apps may not be the
representatives of all possible real-world apps. To counter
this, we collected all 2,486 apps from F-Droid at the time
of our study, which is the largest database of open-source
apps, and covers diverse app categories. We also collected
a diverse set of 3,230 closed-source Google Play apps as
subjects. Second, our mined exceptions may not include
all possible exceptions. To counter this, we mined the issue
repositories of 2,174 apps on GitHub and Google Code; and
applied testing tools on 5,334 unique apps, which leads to
total 30,009 exceptions. To our knowledge, this is the largest
study for analyzing Android app exceptions.
Internal Validity. First, our exception analysis may not
be absolutely complete and correct. For completeness, (i)
we investigated 8,243 framework exceptions, and carefully
inspected all common exception types. (ii) We surveyed pre-
vious work [132], [133], [15], [19], [134], [116], [56], [21], [31],
[11], [98], [12], [135] that reported exceptions, and observed
all their exception types and patterns were covered by our
study. For correctness, we cross-validated our analysis on
each exception type, and also referred to the patches from
developers and Stack Overflow posts. More importantly, we
surveyed 135 professional app developers to gain more un-
derstandings and insights to validate our analysis. Second,
the classification of app exceptions (Section 3.1) and the
taxonomy of root causes (Section 3.2) may be subjective.
This may affect the validity of some analysis results. To
counter this, we carefully analyzed these exceptions based
on our understanding, and the knowledge from Android
documentation and development tutorials.
Construct Validity. The online developer survey may have
some limitations. The designed questions may not fully
cover all aspects, and affect the validity of our conclu-
sions drawn from this survey. But we tried our best to
design appropriate questions, and refined these questions
according to early feedback from three experienced Android
developers and our own long-time research experience of

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 19

inspecting developers activities on GitHub. In the survey,
we also provided some questions with open options to re-
ceive any comments from developers, which complemented
our provided options. Our constructed benchmark may also
subject to construct validity. To counter this, we manually
verified all reproducible cases. For ground-truth cases, we
also automatically checked the validity of exception traces.

7 RELATED WORK

A number of fault studies exist in the literature for
Android apps from different perspectives, e.g., perfor-
mance [103], energy [136], compatibility issues [64], [137],
permission issues [138], memory leak [139], [140], GUI
failures [105], [106], [141], resource usage [57], [104], API
stability [97], security [142], [143], [144] etc. However, none
of these work particularly focuses on app crashes and ex-
ceptions, which is the main goal we target at in this work.

Hu et al. [132] make one of the first attempts to analyze
functional bugs for Android apps. They manually classify 8
bug types (e.g., Activity errors, Event errors, Type errors) from
158 bug reports of 10 apps. Other efforts include [134], [31],
which however have different goals compared to our study:
Coelho et al. [31] analyze exception traces to investigate the
bug hazards of exception-handling code (e.g., cross-type
exception wrapping), Zaeem et al. [134] study 106 bugs of
13 apps to generate testing oracles for a specific set of
bug types. However, none of them give a large-scale and
comprehensive analysis in this direction, and the validity of
their conclusions is also unclear.

Linares-Vásquez et al. [127] recently also analyze a large
number of android app bugs. But our study is significantly
different from theirs. First, we focus on analyzing crash
bugs caused by framework exceptions, while they focus on
designing mutation operators to evaluate the effectiveness
of test suites. Second, we give a much more comprehensive,
deep analysis on the root causes, exception detection, repro-
duction and fixing.

Based on our dataset and analysis results, we con-
structed the benchmark DroidDefects. Although prior work
also construct some benchmarks of Android app faults, our
benchmark is more systematic in the number of faults, ex-
ception types and root causes. For example, AndroTest [69],
[145] is a dataset of 68 apps collected from early research
work [133], [13], [15], [18], to evaluate the fault detection
abilities of Android app testing tools. But these subjects are
randomly selected from F-Droid without any specific selec-
tion criteria. Many of these apps are quite out-of-date and
error-prone. DroidBugs [27], [146], the only available dataset
for automated program repair of Android apps, merely
contains 13 bugs from 5 apps. This dataset is introductory,
and has not provided any information about bug types.

Researchers have also constructed benchmarks for other
bug types. MUBench [147] is a benchmark of 89 API mis-
uses mined from 33 real-world projects, including Android.
AppLeak [148] is a benchmark of 40 resource leak bugs
in Android apps, which contains the faulty apps, bug-
fixed versions (when available), and reproducible test cases.
Mostafa et al. [149] study behavioral backward incompati-
bilities of Java software libraries, including Android. They
archived a number of backward incompatibility faults. In

contrast, our work focus on exception bugs, and covers
diverse categories and root causes.

8 CONCLUSION

In this paper, we conducted the first large-scale, compre-
hensive study to understand framework exceptions of An-
droid apps, which account for the majority of app exception
bugs. Specifically, we investigated framework exceptions
from several perspectives, including exception characteris-
tics, root causes, testing practice of developers, abilities of
existing bug detection tools, exception reproducibility and
common fix practices. To validate and generalize our analy-
sis results, we considered both open-source and commercial
apps, and further conducted an online developer survey to
gain more insights from the developers’ knowledge and ex-
periences. Through this study, we constructed DroidDefects,
the first comprehensive and largest benchmark of exception
bugs, to enable follow-up research; and built two prototype
tools, Stoat+ and ExLocator, to demonstrate the usefulness
of our findings. We pointed a number of research directions
that deserve more research efforts.

ACKNOWLEDGMENTS

We would like to thank the constructive and valuable
comments from the TSE reviewers. We also appreciate the
Android app developers who participate in our online
survey, and share us many experience and feedback in
this field. This work was partially supported by SNSF
Spark Project CRSK-2_190302; partially supported by NSFC
Project 61632005 and 61532019; partially supported by the
National Research Foundation, Prime Ministers Office, Sin-
gapore under its National Cybersecurity R&D Program
(Award No. NRF2018NCR-NCR005-0001), the Singapore
National Research Foundation under NCR Award Num-
ber NRF2018NCR-NSOE004-0001, and NRF Investigator-
ship NRFI06-2020-0022.

REFERENCES

[1] “Number of Android applications,” http://www.appbrain.com/
stats/number-of-android-apps.

[2] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu,
“Storydroid: Automated generation of storyboard for android
apps,” in ICSE, 2019, pp. 596–607.

[3] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile app users complain about?” IEEE Software, vol. 32, no. 3,
pp. 70–77, 2015.

[4] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting
crashing releases of mobile applications,” in ESEM, 2016, pp.
29:1–29:10.

[5] “Robotium,” http://www.robotium.org.
[6] “Appium,” http://appium.io/.
[7] “Android Lint,” https://developer.android.com/studio/write/

lint.html.
[8] “FindBugs,” http://findbugs.sourceforge.net/.
[9] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and

D. Lo, “Understanding the test automation culture of app de-
velopers,” in ICST, 2015, pp. 1–10.

[10] M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshyvanyk,
“How developers detect and fix performance bottlenecks in
android apps,” in ICSME, 2015, pp. 352–361.

[11] K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective auto-
mated testing for android applications,” in ISSTA, 2016, pp. 94–
105.

[12] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in ESEC/FSE, 2017, pp. 245–256.

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://www.robotium.org
http://appium.io/
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
http://findbugs.sourceforge.net/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 20

[13] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in FSE, 2012, p. 59.

[14] H. van der Merwe, B. van der Merwe, and W. Visser, “Verifying
android applications using java pathfinder,” SIGSOFT Softw. Eng.
Notes, vol. 37, no. 6, pp. 1–5, 2012.

[15] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input
generation system for Android apps,” in ESEC/FSE, 2013, pp.
224–234.

[16] T. Azim and I. Neamtiu, “Targeted and depth-first exploration
for systematic testing of Android apps,” in OOPSLA, 2013, pp.
641–660.

[17] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for au-
tomated gui-model generation of mobile applications,” in FASE,
2013, pp. 250–265.

[18] W. Choi, G. C. Necula, and K. Sen, “Guided GUI testing of
Android apps with minimal restart and approximate learning,”
in OOPSLA, 2013, pp. 623–640.

[19] R. Mahmood, N. Mirzaei, and S. Malek, “EvoDroid: segmented
evolutionary testing of Android apps,” in FSE, 2014, pp. 599–609.

[20] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of
mobile apps,” in MobiSys, 2014, pp. 204–217.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and
A. M. Memon, “MobiGUITAR: Automated model-based testing
of mobile apps,” IEEE Software, vol. 32, no. 5, pp. 53–59, 2015.

[22] T. Su, “FSMdroid: Guided GUI Testing of Android Apps,” in
ICSE, 2016, pp. 689–691.

[23] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lu,
“Aimdroid: Activity-insulated multi-level automated testing for
android applications,” in ICSME, 2017, pp. 103–114.

[24] W. Song, X. Qian, and J. Huang, “EHBDroid: Beyond gui testing
for android applications,” in ASE, 2017, pp. 27–37.

[25] H. Mirzaei and A. Heydarnoori, “Exception fault localization in
android applications,” in MOBILESoft, 2015, pp. 156–157.

[26] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
crashes in android apps,” in ICSE, 2018, pp. 187–198.

[27] L. Azevedo, A. Dantas, and C. G. Camilo-Junior, “Droidbugs: An
android benchmark for automatic program repair,” CoRR, vol.
abs/1809.07353, 2019.

[28] “Monkey,” http://developer.android.com/tools/help/monkey.
html.

[29] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and
Z. Su, “Large-scale analysis of framework-specific exceptions in
android apps,” in ICSE, 2018, pp. 408–419.

[30] “Android Developers Documentation,” https://developer.
android.com/reference/packages.html.

[31] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen, “Unveil-
ing exception handling bug hazards in android based on github
and google code issues,” in MSR, 2015, pp. 134–145.

[32] “F-Droid,” https://f-droid.org/.
[33] “Google Play Store,” https://play.google.com/store/apps.
[34] “EMMA,” http://emma.sourceforge.net/.
[35] “JaCoCo,” http://www.eclemma.org/jacoco/.
[36] “Amazon Mechanical Turk,” https://www.mturk.com.
[37] “CodePath Android Cliffnotes,” http://guides.codepath.com/

android.
[38] “Advanced Android Development,” https://developer.android.

com/courses/advanced-training/overview.
[39] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me

updated: An empirical study of third-party library updatability
on android,” in CCS, 2017, pp. 2187–2200.

[40] G. Nunez, “Party pooper: Third-party libraries in android,” 2011.
[41] I. G. W. Group, “Standard glossary of terms used in software

testing,” International Software Testing Qualifications Board, pp. 1–
25, 2015.

[42] “Root cause,” https://en.wikipedia.org/wiki/Root_cause.
[43] “Activity Lifecycle,” https://developer.android.com/guide/

components/activities/activity-lifecycle.html.
[44] “Bankdroid,” https://github.com/liato/android-bankdroid.
[45] “Bankdroid revision 8b31cd3,” https://

github.com/liato/android-bankdroid/commit/
8b31cd36fab5ff746ed5a2096369f9990de7b064.

[46] “Fragments,” https://developer.android.com/guide/
components/fragments.html.

[47] “c:geo,” https://github.com/cgeo/cgeo.
[48] “c:geo revision d6b4e4d,” https://github.com/cgeo/cgeo/

commit/d6b4e4d958568ea04669f511a85f24ac08f524b6.

[49] “Handler,” https://developer.android.com/reference/android/
os/Handler.html.

[50] “Looper,” https://developer.android.com/reference/android/
os/Looper.html.

[51] “Local-GSM-Backend,” https://github.com/n76/
Local-GSM-Backend.

[52] “PhoneStateListener,” http://grepcode.com/file/repository.
grepcode.com/java/ext/com.google.android/android/
4.3.1_r1/android/telephony/PhoneStateListener.java#
PhoneStateListener.0mHandler.

[53] “Local-GSM-Backend revision 07e4a759,” https:
//github.com/n76/Local-GSM-Backend/commit/
07e4a759392c6f2c0b28890f96a177cb211ffc2d.

[54] “NetworkOnMainThreadException,” https://
developer.android.com/reference/android/os/
NetworkOnMainThreadException.html.

[55] “Requesting Permissions at Runtime,” https://developer.
android.com/training/permissions/requesting.html.

[56] P. Bielik, V. Raychev, and M. Vechev, “Scalable race detection for
android applications,” in OOPSLA, 2015, pp. 332–348.

[57] Y. Liu, J. Wang, L. Wei, C. Xu, S. Cheung, T. Wu, J. Yan, and
J. Zhang, “Droidleaks: a comprehensive database of resource
leaks in android apps,” Empirical Software Engineering, vol. 24,
no. 6, pp. 3435–3483, 2019.

[58] “Nextcloud Notes,” https://github.com/stefan-niedermann/
nextcloud-notes.

[59] “Nextcloud Notes Issue,” https://github.com/
stefan-niedermann/nextcloud-notes/issues/199.

[60] “Nextcloud Notes revision,” https://github.com/
stefan-niedermann/nextcloud-notes/pull/212/commits/
aa1a97292b5f7511473282cc40f23e786f019d7f.

[61] “Atarashii,” https://github.com/AnimeNeko/Atarashii.
[62] “Atarashii revision b311ec3,” https://github.com/AnimeNeko/

Atarashii/commit/b311ec327413aa4ef4aaabb8a8496c61d342cfe9.
[63] “JDK 7 Compatibility Issues,” http://kb.yworks.com/article/

550/.
[64] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:

Characterizing and detecting compatibility issues for android
apps,” in ASE, 2016, pp. 226–237.

[65] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu,
“Understanding and detecting fragmentation-induced compat-
ibility issues for android apps,” IEEE Transactions on Software
Engineering, 2018.

[66] C. Hsiao, C. Pereira, J. Yu, G. Pokam, S. Narayanasamy, P. M.
Chen, Z. Kong, and J. Flinn, “Race detection for event-driven
mobile applications,” in PLDI’14, 2014, pp. 326–336.

[67] M. L. Vásquez, C. Bernal-Cárdenas, K. Moran, and D. Poshy-
vanyk, “How do developers test android applications?” in IC-
SME, 2017, pp. 613–622.

[68] “MonkeyRunner,” https://developer.android.com/studio/test/
monkeyrunner/.

[69] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet? (E),” in ASE, 2015, pp.
429–440.

[70] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie,
“An empirical study of android test generation tools in industrial
cases,” in ASE, 2018, pp. 738–748.

[71] A. Arcuri and L. C. Briand, “A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineer-
ing,” Softw. Test., Verif. Reliab., vol. 24, no. 3, pp. 219–250, 2014.

[72] “Mann-Whitney U test,” https://en.wikipedia.org/wiki/
Mann-Whitney_U_test.

[73] E. Kowalczyk, M. B. Cohen, and A. M. Memon, “Configurations
in android testing: they matter,” in A-Mobile, 2019, pp. 1–6.

[74] K. Moran, M. L. Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Auto-completing bug reports for android applications,”
in ESEC/FSE, 2015, pp. 673–686.

[75] ——, “FUSION: a tool for facilitating and augmenting android
bug reporting,” in ICSE, 2016, pp. 609–612.

[76] K. Moran, M. L. Vásquez, C. Bernal-Cárdenas, C. Vendome,
and D. Poshyvanyk, “Automatically discovering, reporting and
reproducing android application crashes,” in ICST, 2016, pp. 33–
44.

[77] M. White, M. L. Vásquez, P. Johnson, C. Bernal-Cárdenas, and
D. Poshyvanyk, “Generating reproducible and replayable bug
reports from android application crashes,” in ICPC, 2015, pp. 48–
59.

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://f-droid.org/
https://play.google.com/store/apps
http://emma.sourceforge.net/
http://www.eclemma.org/jacoco/
https://www.mturk.com
http://guides.codepath.com/android
http://guides.codepath.com/android
https://developer.android.com/courses/advanced-training/overview
https://developer.android.com/courses/advanced-training/overview
https://en.wikipedia.org/wiki/Root_cause
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://github.com/liato/android-bankdroid
https://github.com/liato/android-bankdroid/commit/8b31cd36fab5ff746ed5a2096369f9990de7b064
https://github.com/liato/android-bankdroid/commit/8b31cd36fab5ff746ed5a2096369f9990de7b064
https://github.com/liato/android-bankdroid/commit/8b31cd36fab5ff746ed5a2096369f9990de7b064
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/fragments.html
https://github.com/cgeo/cgeo
https://github.com/cgeo/cgeo/commit/d6b4e4d958568ea04669f511a85f24ac08f524b6
https://github.com/cgeo/cgeo/commit/d6b4e4d958568ea04669f511a85f24ac08f524b6
https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/android/os/Looper.html
https://developer.android.com/reference/android/os/Looper.html
https://github.com/n76/Local-GSM-Backend
https://github.com/n76/Local-GSM-Backend
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
https://github.com/n76/Local-GSM-Backend/commit/07e4a759392c6f2c0b28890f96a177cb211ffc2d
https://github.com/n76/Local-GSM-Backend/commit/07e4a759392c6f2c0b28890f96a177cb211ffc2d
https://github.com/n76/Local-GSM-Backend/commit/07e4a759392c6f2c0b28890f96a177cb211ffc2d
https://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
https://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
https://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://github.com/stefan-niedermann/nextcloud-notes
https://github.com/stefan-niedermann/nextcloud-notes
https://github.com/stefan-niedermann/nextcloud-notes/issues/199
https://github.com/stefan-niedermann/nextcloud-notes/issues/199
https://github.com/stefan-niedermann/nextcloud-notes/pull/212/commits/aa1a97292b5f7511473282cc40f23e786f019d7f
https://github.com/stefan-niedermann/nextcloud-notes/pull/212/commits/aa1a97292b5f7511473282cc40f23e786f019d7f
https://github.com/stefan-niedermann/nextcloud-notes/pull/212/commits/aa1a97292b5f7511473282cc40f23e786f019d7f
https://github.com/AnimeNeko/Atarashii
https://github.com/AnimeNeko/Atarashii/commit/b311ec327413aa4ef4aaabb8a8496c61d342cfe9
https://github.com/AnimeNeko/Atarashii/commit/b311ec327413aa4ef4aaabb8a8496c61d342cfe9
http://kb.yworks.com/article/550/
http://kb.yworks.com/article/550/
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/studio/test/monkeyrunner/
https://en.wikipedia.org/wiki/Mann-Whitney_U_test
https://en.wikipedia.org/wiki/Mann-Whitney_U_test

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 21

[78] M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso, “Automat-
ically translating bug reports into test cases for mobile apps,” in
ISSTA, 2019, pp. 141–152.

[79] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. J. Hal-
fond, “Recdroid: automatically reproducing android application
crashes from bug reports,” in ICSE, 2019, pp. 128–139.

[80] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier, “Reproducing
context-sensitive crashes of mobile apps using crowdsourced
monitoring,” in MOBILESoft, 2016, pp. 88–99.

[81] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu,
“Efficiently manifesting asynchronous programming errors in
android apps,” in ASE, 2018, pp. 486–497.

[82] “ACRA: Application Crash Reports for Android,” https://
github.com/ACRA/acra.

[83] “Google Analytics for Firebase,” https://firebase.google.com/
products/analytics/.

[84] “Monitor the performance and usage of your Android, iOS apps
with Splunk Enterprise,” https://mint.splunk.com/.

[85] “MonkeyScript,” https://android.googlesource.com/platform/
development/+/android-4.2.2_r1/cmds/monkey/src/com/
android/commands/monkey/MonkeySourceScript.java.

[86] “UIAutomator,” https://developer.android.com/training/
testing/ui-automator.

[87] A. M. Memon and M. B. Cohen, “Automated testing of GUI
applications: models, tools, and controlling flakiness,” in ICSE,
2013, pp. 1479–1480.

[88] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of flaky tests,” in FSE, 2014, pp. 643–653.

[89] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of
flaky tests in android apps,” in ICSME, 2018, pp. 534–538.

[90] “Fragment Transactions and Activity State Loss,”
http://www.androiddesignpatterns.com/2013/08/
fragment-transaction-commit-state-loss.html.

[91] Z. Shan, T. Azim, and I. Neamtiu, “Finding resume and restart
errors in android applications,” in OOPSLA, 2016, pp. 864–880.

[92] “NextGIS Mobile revision 2ef12a7,” https:
//github.com/nextgis/android_gisapp/commit/
2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e.

[93] “WordPress revision 663ce5c,” https://github.com/
wordpress-mobile/WordPress-Android/commit/
663ce5c1bbd739f29f6c23d9ecacbd666e4f806f.

[94] “Keeping Your App Responsive,” https://developer.android.
com/training/articles/perf-anr.html.

[95] “Managing Bitmap Memory,” https://developer.android.com/
topic/performance/graphics/manage-memory.html.

[96] “MPDroid Issue,” https://github.com/abarisain/dmix/issues/
286.

[97] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api
stability and adoption in the android ecosystem,” in ICSM, 2013,
pp. 70–79.

[98] S. GRAZIUSSI, “Lifecycle and event-based testing for android
applications,” Master’s thesis, School Of Industrial Engineering
and Information, Politecnico, 9 2016.

[99] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of exist-
ing faults to enable controlled testing studies for java programs,”
in ISSTA, 2014, pp. 437–440.

[100] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass bench-
marks for automated repair of C programs,” IEEE Trans. Software
Eng., vol. 41, no. 12, pp. 1236–1256, 2015.

[101] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing
failures in mobile oses: A case study with android and symbian,”
in ISSRE, 2010, pp. 249–258.

[102] J. Kochhar, J. Keng, and T. Biying, “An empirical study on bug
reports of android 3rd party libraries,” Singapore Management
University, 2013.

[103] Y. Liu, C. Xu, and S. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in ICSE, 2014,
pp. 1013–1024.

[104] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, “Understanding and
detecting wake lock misuses for android applications,” in FSE,
2016, pp. 396–409.

[105] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execu-
tion of android test suites in adverse conditions,” in ISSTA, 2015,
pp. 83–93.

[106] D. Amalfitano, V. Riccio, A. C. R. Paiva, and A. R. Fasolino, “Why
does the orientation change mess up my android application?

from GUI failures to code faults,” Softw. Test., Verif. Reliab., vol. 28,
no. 1, 2018.

[107] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in FSE,
2018, pp. 797–802.

[108] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global android
banking apps,” in ICSE, 2020, pp. 596–607.

[109] “Espresso,” https://developer.android.com/training/testing/
espresso/.

[110] N. P. B. Jr., “Data flow oriented UI testing: exploiting data flows
and UI elements to test android applications,” in ISSTA, 2017, pp.
432–435.

[111] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su, “A
survey on data-flow testing,” ACM Comput. Surv., vol. 50, no. 1,
pp. 5:1–5:35, Mar. 2017.

[112] “PMD rules,” https://pmd.github.io/pmd-5.8.1/pmd-java/
rules/java/android.html.

[113] “Android Lint Checks,” http://tools.android.com/tips/
lint-checks.

[114] “Stoat,” https://github.com/tingsu/Stoat.
[115] K. Moran, M. L. Vásquez, C. Bernal-Cárdenas, C. Vendome,

and D. Poshyvanyk, “Crashscope: a practical tool for automated
testing of android applications,” in ICSE, 2017, pp. 15–18.

[116] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively
detecting mobile app bugs with AppDoctor,” in EuroSys, 2014,
pp. 18:1–18:15.

[117] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot-a java bytecode optimization framework,” in Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on
Collaborative research. IBM Press, 1999, p. 13.

[118] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold,
“Fault localization and repair for java runtime exceptions,” in
ISSTA, 2009, pp. 153–164.

[119] S. Jiang, H. Zhang, Q. Wang, and Y. Zhang, “A debugging
approach for java runtime exceptions based on program slicing
and stack traces,” in QSIC, 2010, pp. 393–398.

[120] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator:
Locating crashing faults based on crash stacks,” in ISSTA, 2014,
pp. 204–214.

[121] Y. Jia and M. Harman, “An analysis and survey of the devel-
opment of mutation testing,” IEEE Trans. Software Eng., vol. 37,
no. 5, pp. 649–678, 2011.

[122] “PIT,” http://pitest.org/.
[123] R. Just, “The major mutation framework: Efficient and scalable

mutation analysis for java,” in ISSTA’14, 2014, pp. 433–436.
[124] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards muta-

tion analysis of android apps,” in ICST, 2015, pp. 1–10.
[125] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation opera-

tors for testing android apps,” Information & Software Technology,
vol. 81, pp. 154–168, 2017.

[126] L. Deng, J. Offutt, and D. Samudio, “Is mutation analysis effective
at testing android apps?” in QRS, 2017, pp. 86–93.

[127] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran,
M. Di Penta, C. Vendome, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Enabling mutation testing for android apps,” in ES-
EC/FSE, 2017, pp. 233–244.

[128] K. Moran, M. Tufano, C. Bernal-Cárdenas, M. L. Vásquez,
G. Bavota, C. Vendome, M. D. Penta, and D. Poshyvanyk,
“Mdroid+: a mutation testing framework for android,” in ICSE,
2019, pp. 33–36.

[129] L. Clapp, O. Bastani, S. Anand, and A. Aiken, “Minimizing GUI
event traces,” in FSE, 2016, pp. 422–434.

[130] W. Choi, K. Sen, G. C. Necula, and W. Wang, “Detreduce: min-
imizing android GUI test suites for regression testing,” in ICSE,
2019, pp. 445–455.

[131] B. Jiang, Y. Wu, T. Li, and W. K. Chan, “Simplydroid: efficient
event sequence simplification for android application,” in ASE,
2017, pp. 297–307.

[132] C. Hu and I. Neamtiu, “Automating gui testing for android
applications,” in AST, 2011, pp. 77–83.

[133] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine,
and A. M. Memon, “Using GUI ripping for automated testing
of Android applications,” in ASE, 2012, pp. 258–261.

[134] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated gen-
eration of oracles for testing user-interaction features of mobile
apps,” in ICST, 2014, pp. 183–192.

https://github.com/ACRA/acra
https://github.com/ACRA/acra
https://firebase.google.com/products/analytics/
https://firebase.google.com/products/analytics/
https://mint.splunk.com/
https://android.googlesource.com/platform/development/+/android-4.2.2_r1/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
https://android.googlesource.com/platform/development/+/android-4.2.2_r1/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
https://android.googlesource.com/platform/development/+/android-4.2.2_r1/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
http://www.androiddesignpatterns.com/2013/08/fragment-transaction-commit-state-loss.html
http://www.androiddesignpatterns.com/2013/08/fragment-transaction-commit-state-loss.html
https://github.com/nextgis/android_gisapp/commit/2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e
https://github.com/nextgis/android_gisapp/commit/2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e
https://github.com/nextgis/android_gisapp/commit/2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e
https://github.com/wordpress-mobile/WordPress-Android/commit/663ce5c1bbd739f29f6c23d9ecacbd666e4f806f
https://github.com/wordpress-mobile/WordPress-Android/commit/663ce5c1bbd739f29f6c23d9ecacbd666e4f806f
https://github.com/wordpress-mobile/WordPress-Android/commit/663ce5c1bbd739f29f6c23d9ecacbd666e4f806f
https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/topic/performance/graphics/manage-memory.html
https://developer.android.com/topic/performance/graphics/manage-memory.html
https://github.com/abarisain/dmix/issues/286
https://github.com/abarisain/dmix/issues/286
https://developer.android.com/training/testing/espresso/
https://developer.android.com/training/testing/espresso/
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/java/android.html
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/java/android.html
http://tools.android.com/tips/lint-checks
http://tools.android.com/tips/lint-checks
https://github.com/tingsu/Stoat
http://pitest.org/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 22

[135] L. Fan, S. Chen, L. Xu, Z. Yang, and H. Zhu, “Model-based
continuous verification,” in APSEC, 2016, pp. 81–88.

[136] A. Banerjee, H.-F. Guo, and A. Roychoudhury, “Debugging
energy-efficiency related field failures in mobile apps,” in MO-
BILESoft, 2016, pp. 127–138.

[137] H. Huang, L. Wei, Y. Liu, and S. Cheung, “Understanding and
detecting callback compatibility issues for android applications,”
in ASE, 2019, pp. 532–542.

[138] A. Sadeghi, R. Jabbarvand, and S. Malek, “Patdroid: Permission-
aware gui testing of android,” in ESEC/FSE, 2017, pp. 220–232.

[139] H. Shahriar, S. North, and E. Mawangi, “Testing of memory leak
in android applications,” in HASE, 2014, pp. 176–183.

[140] G. Santhanakrishnan, C. Cargile, and A. Olmsted, “Memory leak
detection in android applications based on code patterns,” in i-
Society, 2016, pp. 133–134.

[141] J. Hu, L. Wei, Y. Liu, S. Cheung, and H. Huang, “A tale of two
cities: how webview induces bugs to android applications,” in
ASE, 2019, pp. 702–713.

[142] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in SEC, 2011, pp. 21–21.

[143] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu, “Gui-
squatting attack: Automated generation of android phishing
apps,” IEEE Transactions on Dependable and Secure Computing,
2019.

[144] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou,
“A large-scale empirical study on industrial fake apps,” in ICSE-
SEIP, 2019, pp. 183–192.

[145] “AndroTest,” http://bear.cc.gatech.edu/~shauvik/androtest/.
[146] “DroidBugs,” https://github.com/I4Soft/DroidBugs.
[147] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,

“Mubench: a benchmark for api-misuse detectors,” in MSR, 2016,
pp. 464–467.

[148] O. Riganelli, D. Micucci, and L. Mariani, “From source code to
test cases: A comprehensive benchmark for resource leak detec-
tion in android apps,” Software: Practice and Experience, vol. 49,
no. 3, pp. 540–548, 2019.

[149] S. Mostafa, R. Rodriguez, and X. Wang, “Experience paper: a
study on behavioral backward incompatibilities of java software
libraries,” in ISSTA, 2017, pp. 215–225.

Ting Su is a postdoc scholar in Department
of Computer Science, ETH Zurich, Switzerland,
and will join East China Normal University as
a Professor in Fall 2020. Previously, he was a
visiting scholar of UC Davis, USA from 2014 to
2015. He received his B.S. in software engineer-
ing and Ph.D. in computer science from School
of Software Engineering, East China Normal
University, Shanghai, China, in 2011 and 2016,
respectively. His research focuses on software
testing and validation, and was recognized with

three ACM SIGSOFT Distinguished Paper Awards (ICSE 2018, ASE
2018, ASE 2019). He has published broadly in top-tier programming
language and software engineering venues, including PLDI, ICSE, FSE,
ASE, and CSUR. More information is available at http://tingsu.github.io/.

Lingling Fan is a Research Fellow in School
of Computer Science and Engineering, Nanyang
Technological University, Singapore, and will join
Nankai University in Fall 2020. She received her
Ph.D and B.Eng. degrees in computer science
from East China Normal University, Shanghai,
China in June 2019 and June 2014, respectively.
She had been a Research Assistant in Cyber
Security Lab of NTU (2017-2019). Her research
focuses on program analysis and testing, soft-
ware security analysis and big data driven anal-

ysis, and has published in top-tier venues of software engineering and
security (including ICSE, ASE, ESEC/FSE, S&P, TDSC, etc.) She got
an ACM SIGSOFT Distinguished Paper Award at ICSE 2018. More
information is available on https://lingling-fan.github.io/..

Sen Chen received his Ph.D. degree in com-
puter science from School of Computer Science
and Software Engineering, East China Normal
University, Shanghai, China, in June 2019. Cur-
rently, he is a Research Assistant Professor in
School of Computer Science and Engineering,
Nanyang Technological University, Singapore,
and will join College of Intelligence and Com-
puting, Tianjin University as a tenured Associate
Professor. Previously, he was a Research Assis-
tant of NTU from 2016 to 2019 and a Research

Fellow from 2019-2020. His research focuses on security and software
engineering. He has published broadly in top-tier security and soft-
ware engineering venues, including ICSE, ESEC/FSE, ASE, TSE, S&P,
TDSC, etc. More information is available on https://sen-chen.github.io/.

Liu Yang received his Bachelor and PhD de-
grees in computer science from National Univer-
sity of Singapore (NUS) in 2005 and 2010, and
continued with his postdoctoral research in NUS.
He is now an Associate Professor in Nanyang
Technological University. His current research
focuses on software engineering, formal meth-
ods and security, and particularly specializes
in software verification using model checking
techniques, which led to the development of a
state-of-the-art model checker, Process Analysis

Toolkit. More information is available at http://www.ntu.edu.sg/home/
yangliu/.

Lihua Xu is Associate Professor of Practice in
Computer Science at NYU Shanghai. She re-
ceived both her Masters and PhD degree in com-
puter science from the University of California,
Irvine. Her research interests are in software
engineering and mobile security, with a focus on
improving software quality via program analysis.
She has published in top-tier venues such as
ICSE, FSE, ASE, CCS, and MobiCom. Her re-
cent work in software analysis received the 2018
ACM SIGSOFT Distinguished Paper Award. She

is a recipient of the “Best New Investigator” award at the 2006 Grace
Hopper Women in Computing conference.

Geguang Pu is a Professor in School of Com-
puter Science and Software Engineering, East
China Normal University. His research interests
include program testing, analysis and verifica-
tion. He served as PC members for international
conferences such as SEFM, ATVA, TASE etc. He
was a co-chair of ATVA 2015. He has published
over 70 publications on the topics of software
engineering and system verification (including
ICSE, FSE, IJCAI, FM, ECAI, CONCUR etc). He
completed his Ph.D. in Mathematics at Peking

University in 2005, and received a B.S. in Mathematics from Wuhan
University in 2000.

Zhendong Su is a Professor in Computer Sci-
ence at ETH Zurich, where he specializes in pro-
gramming languages, software engineering, and
computer security. He received both his M.S.
and Ph.D. degrees in Computer Science from
the University of California at Berkeley, and both
his B.S. degree in Computer Science and B.A.
degree in Mathematics from the University of
Texas at Austin. More information is available at
https://people.inf.ethz.ch/suz/.

http://bear.cc.gatech.edu/~shauvik/androtest/
https://github.com/I4Soft/DroidBugs
http://tingsu.github.io/
http://www.ntu.edu.sg/home/yangliu/
http://www.ntu.edu.sg/home/yangliu/
https://people.inf.ethz.ch/suz/

	Introduction
	Motivations
	Challenges
	Data Collection and Online Survey
	Crash Analysis
	Applications
	Contributions

	Preliminary and Study Preparation
	Android Exception Model
	Data Collection
	App Subjects
	Exception Trace Collection
	Other Resource Collection

	Online App Developer Survey
	Questionnaire Design
	Participants

	Empirical Study
	RQ1: Characteristics of Exceptions
	Exception Category and Distribution
	Locations of Framework Exception Manifestation
	Locations of Library Exception Manifestation

	RQ2: Taxonomy of Framework Exceptions
	Exception Analysis Method
	Taxonomy
	Understanding Root Causes from Developers

	RQ3: Detecting Exception Bugs
	Tools for Detecting Exception Bugs
	Unsatisfactory Points of Existing Tools

	RQ4: Auditing Automatic Bug Detection Tools
	RQ5: Reproducibility of Exception Bugs
	Perspective of App Developers
	Perspective of Testing Tools

	RQ6: Fixing Patterns and Characteristics

	The benchmark DroidDefects
	Android App Defect Scenario
	Artifacts of DroidDefects
	Benchmark Setup Details
	Setup of reproducible defects
	Setup of ground-truth defects

	Applications of Our Study
	Improving Exception Detection
	Enabling Exception Localization
	Enhancing Mutation Testing

	Discussion
	Lessons Learned
	Threats to Validity

	Related Work
	Conclusion
	References
	Biographies
	Ting Su
	Lingling Fan
	Sen Chen
	Liu Yang
	Lihua Xu
	Geguang Pu
	Zhendong Su

